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Overview

* Multiprocessor OS (Background and Review)
- How does it work? (Background)
- Scalability (Review)

* Multiprocessor Hardware
- Contemporary systems (Intel, AMD, ARM, Oracle/Sun)
- Experimental and Future systems (Intel, MS, Polaris)

* OS Design for Multiprocessors
- Guidelines
- Design approaches
* Divide and Conquer (Disco, Tesselation)
* Reduce Sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
* No Sharing (Barrelfish, fos)
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Uniprocessor OS
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Multiprocessor OS
/ CPU \ / CPU \ / \

Key design challenges:
* Correctness of (shared) data structures
* Scalability (performance doesn’t suffer)

N /

o .

-
\
\

OS data
Run Process control FS
queue blocks structs

Memory
pd
g

N~

6 | COMP9242T2/2019 W10



Correctness of Shared Data

* Concurrency control
- Locks

Semaphores
Transactions
Lock-free data structures

* We know how to do this:

- In the application
- Inthe OS

e
DATA
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Scalability

Speedup as more processors added

Ideal
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Scalability

Speedup as more processors added

Reality
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Scalability and Serialisation
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Scalability and Serialisation

Remember Amdahl’s law
- Serial (non-parallel) portion: when application not running on all cores

- Serialisation prevents scalability
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Serialisation

Where does serialisation show up?
- Application (e.g. access shared app data)
- OS (e.g. performing syscall for app) How much time is spent in OS?

Sources of Serialisation

Locking (explicit serialisation)
*  Waiting for a lock = stalls self
*  Lock implementation:
* Atomic operations lock bus = stalls everyone waiting for memory
* Cache coherence traffic loads bus = stalls others waiting for memory

Memory access (implicit)
- Relatively high latency to memory =» stalls self
Cache (implicit)
- Processor stalled while cache line is fetched or invalidated

- Affected by latency of interconnect
- Performance depends on data size (cache lines) and contention (number of cores)

% | > I
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More Cache-related Serialisation

False sharing
- Unrelated data structs share the same cache line

- Accessed from different processors
=» Cache coherence traffic and delay

Cache line bouncing
- Shared R/W on many processors
- E.g: bouncing due to locks: each processor spinning on a lock brings it into its own cache

=» Cache coherence traffic and delay

Cache misses
- Potentially direct memory access = stalls self

- When does cache miss occur?
* Application accesses data for the first time, Application runs on new core

* Cached memory has been evicted
* Cache footprint too big, another app ran, OS ran

% | > I
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Multi-What?

* Terminology:
- core, die (chip), package (module, processor, CPU)

* Multiprocessor, SMP
- >1 separate processors, connected by off-processor interconnect

* Multithread, SMT
- >1 hardware threads in a single processing core

* Multicore, CMP
- >1 processing cores in a single die, connected by on-die interconnect

* Multicore + Multiprocessor
- >1 multicore dies in a package (multi-chip module), on-processor interconnect
- >1 multicore processors, off-processor interconnect

* Manycore
- Lots (>100) of cores

% | > I
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Interesting Properties of Multiprocessors

* Scale and Structure
- How many cores and processors are there
- What kinds of cores and processors are there
- How are they organised (access to 10, etc.)

* Interconnect
- How are the cores and processors connected

* Memory Locality and Caches
- Where is the memory
- What is the cache architecture

* Interprocessor Communication
- How do cores and processors send messages to each other

% | > I
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Contemporary Multiprocessor Hardware

* Intel:

Nehalem, Westmere: 10 core, QPI

Sandy Bridge, Ivy Bridge: 5 core, ring bus, integrated GPU, L3, IO

Haswell (Broadwell): 18+ core, ring bus, transactional memory, slices (EP)
Skylake (SP): mesh architecture

* AMD:
- K10 (Opteron: Barcelona, Magny Cours): 12 core, Hypertransport
- Bulldozer, Piledriver, Steamroller (Opteron, FX)
* 16 core, Clustered Multithread: module with 2 integer cores
- Zen: on die NUMA: CPU Complex (CCX) (4 core, private L3)
- Zen 2: chiplets (2xCCX) chiplets, 10 die (incl mem controller)

* Oracle (Sun) UltraSparc T1,T2,T3,T4,T5 (Niagara), M5,M7
- T5:16 cores, 8 threads/core (2 simultaneous), crossbar, 8 sockets,
- M8: 32 core, 8 threads, on chip network, 8 sockets, 5GHz

* ARM Cortex A9, A15 MPCore, big.LITTLE, DynamIQ
- 4 -8 cores, big.LITTLE: A7 + A15, dynamIQ: A75 + A55

% | > I
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Scale and Structure

* ARM Cortex A9

ARM CoreSight™ MulticoreDebug and Trace Architecture
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Scale and Structure

* ARM big.LITTLE

GIC-400

Interrupts Interrupts

Memory Controller System Port
Ports
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Scale and Structure

Conventional DynamlQ
big.LITTLE big.LITTLE

Quad 1b+2L 1b+3L
Cortex-A53

Octa 1b+4L 1b+7L
Cortex-A53
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Scale and Structure

* Intel Nehalem
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Memory Locality and Caches

* NUMA (Non-Uniform Memory Access)
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Interconnect

* AMD Barcelona
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Interconnect (Latency)
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Interconnect (Bandwidth)
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Interconnect

Haswell EP Die Configurations

14-18 Core (HCQ) 4-8 Core (LCQ)
JLILIL ]

e e

Not representative of actual die-sizes, orientation and layouts — for informational use only.

Chop Columns Home Agents Cores Power (W) Transitors (B) Die Area (mm?2)
HCC 4 2 14-18 110-145 5.69 662
MCC 3 2 6-12 65-160 3.84 492

LCC 2 1 4-8 55-140 2.60 354

(intel.

G
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Interconnect/Structure/Memory

Cluster on Die (COD) Mode

= Supported on 1S & 2S SKUs with 2 Home Agents
(10+ cores)

= |In memory directory bits & directory cache used on
2S to reduce coherence traffic and cache-to-cache
transfer latencies

= Targeted at NUMA optimized workloads where
latency is more important than sharing across
Caching Agents

= Reduces average LLC hit and local memory latencies

= HA sees most requests from reduced set of threads
potentially offering higher effective memory bandwidth

= OS/VMM own NUMA and process affinity decisions
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Experimental/Future/Non-mainstream Multiprocessor
Hardware

* Microsoft Beehive
- Ring bus, no cache coherence

* Tilera (now Mellanox) Tile64, Tile-Gx
- 100 cores, mesh network

* Intel Polaris
- 80 cores, mesh network

* Intel SCC

- 48 cores, mesh network, no cache coherency

* Intel MIC (Multi Integrated Core)

- Knight’s Corner/Landing - Xeon Phi
- 60+ cores, ring bus/mesh

DATA
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Scale and Structure

* Tilera Tile64 (newest: Mellanox TILE-GXx), Intel Polaris

DDR2 Controller 1

DDR2 Controller 0

L

DDR2 Controller 2

DDR2 Controller 3
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Cache and Memory and IPC

* Intel SCC

e
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Interprocessor Communication

* Beehive
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Interconnect
* Intel MIC (Multi Integrated Core) (Knight’s Corner/Landing - Xeon Phi)
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Summary
* Scalability

- 100+ cores
- Amdahl’s law really kicks in

* Heterogeneity
- Heterogeneous cores, memory, etc.

- Properties of similar systems may vary wildly (e.g. interconnect topology and latencies between
different AMD platforms)

* NUMA

- Also variable latencies due to topology and cache coherence

* Cache coherence may not be possible
- Can’t use it for locking
- Shared data structures require explicit work

* Computer is a distributed system
- Message passing
- Consistency and Synchronisation
- Fault tolerance

% | > I
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Optimisation for Scalability

* Reduce amount of code in critical sections
- Increases concurrency

- Fine grained locking

* Lock data not code
* Tradeoff: more concurrency but more locking (and locking causes serialisation)

- Lock free data structures

* Avoid expensive memory access
- Avoid uncached memory
- Access cheap (close) memory

% | > I
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Optimisation for Scalability

* Reduce false sharing
- Pad data structures to cache lines

* Reduce cache line bouncing
- Reduce sharing
- E.g: MCS locks use local data

* Reduce cache misses
- Affinity scheduling: run process on the core where it last ran.
- Avoid cache pollution

% | > |
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OS Design Guidelines for Modern (and future)

Multiprocessors

* Avoid shared data
- Performance issues arise less from lock contention than from data locality

* Explicit communication
- Regain control over communication costs (and predictability)
- Sometimes it’s the only option

* Tradeoff: parallelism vs synchronisation
- Synchronisation introduces serialisation
- Make concurrent threads independent: reduce crit sections & cache misses

* Allocate for locality
- E.g. provide memory local to a core

* Schedule for locality
- With cached data
- With local memory

* Tradeoff: uniprocessor performance vs scalability

% | > I
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Design approaches

* Divide and conquer
- Divide multiprocessor into smaller bits, use them as normal
- Using virtualisation
- Using exokernel

* Reduced sharing

- Brute force & Heroic Effort

* Find problems in existing OS and fix them

* E.g Linux rearchitecting: BKL -> fine grained locking
- By design

* Avoid shared data as much as possible

* No sharing
- Computer is a distributed system
* Do extra work to share!

% | > I
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Divide and Conquer

Disco
- Scalability is too hard!

* Context:
- ca. 1995, large ccNUMA multiprocessors appearing

- Scaling OSes requires extensive modifications

* Idea:
- Implement a scalable VMM
- Run multiple OS instances

* VMM has most of the features of a scalable OS:
- NUMA aware allocator
- Page replication, remapping, etc.

* VMM substantially simpler/cheaper to implement

* Modern incarnations of this
- Virtual servers (Amazon, etc.)
- Research (Cerberus)

% | > I
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Disco Architecture

o2 G| [@)][@
O
OS SMP-OS OS OS Thin OS
PE PE PE PE PE PE PE PE
| [ I I | I
é’ Interconnect JD'

ccNUMA Multuprocessor

[Bugnion et al., 1997]
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Disco Performance
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Space-Time Partitioning

Tessellation
- Space-Time partitioning
- 2-level scheduling

* Context: |<—Application Partitions—>| I‘_(S)::\:::t;nlgaft{: :)en"s‘—bl
- 2009-... highl
enly Threads Threads Threads Threads

s SETEREEE 1 STETE 1 EREEE 1 SIS

- Berkeley Par Lab Application Application Parallel Network
Runtime Runtime File Sys. Service
Runtime Runtime

Tessellatlon OS (space-time partitioning)
i

Multlcore Hardware
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Tessellation
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Reduce Sharing

K42

* Context:
- 1997-2006: OS for ccNUMA systems
- IBM, U Toronto (Tornado, Hurricane)

* Goals:
- High locality
- Scalability

* Object Oriented
- Fine grained objects

* Clustered (Distributed) Objects
- Data locality

* Deferred deletion (RCU)
- Avoid locking

* NUMA aware memory allocator
- Memory locality

% | a |
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K42: Fine-grained objects

Traditional System OO Decomposed System

User-level
requests
System paths &
data structures
used to satisfy
requests

e much sharing e much less sharing

e better performance
[Appavoo, 2005]

% | >
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K42: Clustered objects

* Globally valid object reference

* Resolves to
- Processor local representative

* Sharing, locking strategy local to each object

* Transparency
- Eases complexity
- Controlled introduction of locality

* Shared counter:
- inc, dec: local access
- val: communication

* Fast path:
- Access mostly local structures

Proc O Proc 1 Proc 2

e
DATA
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K42 Performance
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1 —— - K42 Shared VM Objects -
30000 ------ K42 Distributed VM Objects 2
] .
nz'
] =
S 20000 =TT
(=) i .
=
o
=
|—
10000
O i T |

5 10 15 20

pd
Processors | DATA
B1
=7



Corey

* Context
- 2008, high-end multicore servers, MIT

* Goals:
- Application control of OS sharing

* OS
- Exokernel-like, higher-level services as libraries
- By default only single core access to OS data structures
- Calls to control how data structures are shared

* Address Ranges
- Control private per core and shared address spaces

* Kernel Cores
- Dedicate cores to run specific kernel functions

* Shares
- Lookup tables for kernel objects allow control over which object identifiers are visible to other cores.

% | > I
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Linux Brute Force Scalability

* Context
- 2010, high-end multicore servers, MIT
* Goals:
48
- Scaling commodity OS aal ok
. o 40
* Linux scalability a6
(2010 — scale Linux to 48 cores) 321
28
24 -
20 -
16
12 -
8_4
4
o memcached PostgreSQL Psearchy
Apache gmake Metis

Y-axis: (throughput with 48 cores) / (throughput with one core)
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Linux Brute Force Scalability

* Apply lessons from parallel computing and past research
- sloppy counters,
- per-core data structs,
- fine-grained lock, lock free,
- cache lines
- 3002 lines of code changed

'8 —
£ S
(&)

S QL
O o>
= @
@ o
e a

Psearchy

Mount tables

Open file table
Sloppy counters -—---—

Lock-free dentry lookup -----—

Super pages
DMA buffer allocation ______

Network stack false sharing
Parallel accept ---—-—

Application modifications
* Conclusion:

- no scalability reason to give up on traditional operating system organizations just yet.

% | > I
52 | COMP92427T12/2019 W10




Scalability of the API

* Context
- 2013, previous multicore projects at MIT

* Goals
- How to know if a system is really scalable?

* Workload-based evaluation
- Run workload, plot scalability, fix problems
- Did we miss any non-scalable workload?
- Did we find all bottlenecks?

* Is there something fundamental that makes a system non-scalable?
- The interface might be a fundamental bottleneck

% | > I
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Scalable Commutativity Rule

* The Rule

- Whenever interface operations commute, they can be implemented in a way that scales.

* Commutative operations:
- Cannot distinguish order of operations from results
- Example:
* Creat:
* Requires that lowest available FD be returned
* Not commutative: can tell which one was run first

* Why are commutative operations scalable?
- results independent of order = communication is unnecessary
- without communication, no conflicts

* Informs software design process
- Design: design guideline for scalable interfaces
- Implementation: clear target
- Test: workload-independent testing

% | > I
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Commuter: An Automated Scalability Testing Tool

Symbolic model

éCommutativity%
conditions

Test cases

Conflicting cache lines
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link
unlink
rename
stat

fstat
Iseek
close
pipe

read
write
pread
pwrite
mmap
munmap
mprotect
memread
memwrite

open
link
unlink
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fstat
Iseek
close
pipe

read
write
pread
pwrite
mmap
munmap
mprotect
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£Rgg o (Linux 3.8, ramfs)
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FlexSC

Syscall impact on user-mode IPC

* Context: 1S
- 2010, commodity multicores g ::
o o 1
- U Toronto é’ © 0.9 Lost performance (cycles)
£ 807 \
* Goal: 29,
0.

. Syscall exception
- Reduce context switch overhead of system calls : : -

Time (in cycles)

* Syscall context switch:
- Usual mode switch overhead
- But: cache and TLB pollution!

0 2000 4000 6000 8000 10000 12000 14000 16000

Syscall Instructions Cycles IPC i-cache d-cache L2 L3 d-TLB
stat 4972 13585 0.37 32 186 660 2559 21
pread 3739 12300 0.30 32 294 679 2160 20
pwrite 5689 31285 0.18 50 373 985 3160 44
open+tclose 6631 19162 0.34 47 240 900 3534 28
mmap-4munmap 8977 19079 0.47 41 233 869 3913 7
opentwritetclose 9921 32815 0.30 78 481 1462 5105 49
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FlexSC

* Asynchronous system calls
- Batch system calls
- Run them on dedicated cores

* FlexSC-Threads
- MonN
- M>>N

Kernel
2222  \e=
A
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FIexSC Results

— —~ 45000
2 4oooo ® flexsc & 40000 & flexsc
¥ 35000 % sync g 35000 % sync
- 2
g g
2 3
= £Z
g g
e o
= , _ = . } } ) )
- 0 200 400 600 800 1000 - 0 200 400 600 800 1000
Request Concurrency Request Concurrency
(a) 1 Core (b) 2 Cores
2
b
— |
Apache g
. S g
FlexSC: batching, s
H =
sys call core redirect > & floxsc
‘9: o ' _ ' _ ¥ sync
- 0 200 400 600 800 1000

Request Concurrency | DATA |
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No sharing

* Multikernel
- Barrelfish
- fos: factored operating system

| Traditional OSes > < Multikernel |

g -
Shared state, Finer-grained Clustered objects, Distributed state,
one-big-lock locking partitioning replica maintenance

% | a |
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Barrelfish

* Context:
- 2007 large multicore machines appearing
- 100s of cores on the horizon
- NUMA (cc and non-cc)
- ETH Zurich and Microsoft

* Goals:
- Scale to many cores
- Support and manage heterogeneous hardware

* Approach:
- Structure OS as distributed system

* Design principles:
- Interprocessor communication is explicit

- OS structure hardware neutral
- State is replicated

* Microkernel
- Similar to selL4: capabilities
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Barrelfish
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Barrelfish: Replication

* Kernel + Monitor:
- Only memory shared for message channels

* Monitor:
- Collectively coordinate system-wide state

* System-wide state:
- Memory allocation tables
- Address space mappings
- Capability lists
* What state is replicated in Barrelfish
- Capability lists
* Consistency and Coordination

- Retype: two-phase commit to globally execute operation in order
- Page (re/un)mapping: one-phase commit to synchronise TLBs
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Barrelfish: Communication

* Different mechanismes:
- Intra-core
* Kernel endpoints
- Inter-core
* URPC

* URPC sender > receiver

- Uses cache coherence + polling
- Shared bufffer
* Sender writes a cache line
* Receiver polls on cache line v
* (last word so no part message)
- Polling?
* Cache only changes when sender writes, so poll is cheap
* Switch to block and IPI if wait is too long.
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Barrelfish: Results

* Message passing vs caching
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Barrelfish: Results

* Broadcast vs Multicast
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Barrelfish: Results

* TLB shootdown
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Summary

* Trends in multicore
- Scale (100+ cores)
- NUMA
- No cache coherence
- Distributed system
- Heterogeneity

* OS design guidelines
- Avoid shared data
- Explicit communication
- Locality

* Approaches to multicore OS
- Partition the machine (Disco, Tessellation)
- Reduce sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
- No sharing (Barrelfish, fos)
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