I DATA
\ 7~

Multiprocessor OS

COMP9242 — Advanced Operating Systems
lhor Kuz | ihor.kuz@data61.csiro.au
T2/2019 Week 10

www.data6l.csiro.au

UNSW

AUSTRALIA



Overview

* Multiprocessor OS (Background and Review)
- How does it work? (Background)
- Scalability (Review)

* Multiprocessor Hardware
- Contemporary systems (Intel, AMD, ARM, Oracle/Sun)
- Experimental and Future systems (Intel, MS, Polaris)

* OS Design for Multiprocessors
- Guidelines
- Design approaches
* Divide and Conquer (Disco, Tesselation)
* Reduce Sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
* No Sharing (Barrelfish, fos)

2 | COMP9242T2/2019 W10



IANININANSNS 2N NS IANINIONNSN N NS VNSNS AN NN SN NSNS

| . I .. I . | L I || I

rd
I DATA
b1
N7~




Uniprocessor OS

CPU

/

/

/ OS data

v

4| COMP9242T2

Run Process control FS
queue blocks structs
Memory

/2019 W10




Multiprocessor OS

CPU CPU CPU
4 N ™
Appl App4
(O 1)
- Y,

N \

OS data N Appllcatlon ta
Appd
Run Process control FS
queue blocks structs w “
% 2
DATA
61
N~

/-
/ ‘

5| COMP924272/2019 W10



Multiprocessor OS
/ CPU \ / CPU \ / \

Key design challenges:
* Correctness of (shared) data structures
* Scalability (performance doesn’t suffer)

N /

o .

-
\
\

OS data
Run Process control FS
queue blocks structs

Memory
pd
g

N~

6 | COMP9242T2/2019 W10



Correctness of Shared Data

* Concurrency control
- Locks

Semaphores
Transactions
Lock-free data structures

* We know how to do this:

- In the application
- Inthe OS

e
DATA

7 | COMP92427T2/2019 W10 ~7



Scalability

Speedup as more processors added

Ideal

sovy =L
TN

T T T T

number of processors (n)

e
DATA
b1

N~

8 | COMP9242T2/2019 W10




Scalability

Speedup as more processors added

Reality

sovy =L
TN

T T T T

number of processors

e
DATA
b1

N~

9 | (COMP9242T2/2019 W10




Scalability and Serialisation

Parallel
Parallel

Parallel
Parallel

Processor 1 Processor 2 Processor 3
Parallel
Parallel Parallel ETEE
Program Parallel Parallel Parallel

Parallel
Parallel

Parallel

Parallel
Parallel Serial

EIEUE
Serial
Parallel
Parallel

Parallel

Parallel Parallel
Parallel

Parallel Parallel

10 | COMP9242 T2/2019 W10

DATA
b1

N~



Scalability and Serialisation

Remember Amdahl’s law
- Serial (non-parallel) portion: when application not running on all cores

- Serialisation prevents scalability

Amdahl's Law 71 =1=(1—P)+P
20.00
T P
) ~
- T -
75%
14.00 90% T 1
1/ 95% S(N) = T—l = P
12.00
S N — S
§ 10.00 // (1 P) +
“ .00 // // 1
6.00 = S(OO) —
NV (1— P)
4.00 78
2.00 _{:/
O.OOH o~ < © o A 3 2 ] — :\‘r 3 x o g ~ (n
w2 R 8 8 8 o ﬁ

— N /
Number of Processors % I E_,IATA I
11 | COMP9242 T2/2019 W10 N~



Serialisation

Where does serialisation show up?
- Application (e.g. access shared app data)
- OS (e.g. performing syscall for app) How much time is spent in OS?

Sources of Serialisation

Locking (explicit serialisation)
*  Waiting for a lock = stalls self
*  Lock implementation:
* Atomic operations lock bus = stalls everyone waiting for memory
* Cache coherence traffic loads bus = stalls others waiting for memory

Memory access (implicit)
- Relatively high latency to memory =» stalls self
Cache (implicit)
- Processor stalled while cache line is fetched or invalidated

- Affected by latency of interconnect
- Performance depends on data size (cache lines) and contention (number of cores)

% | > I
12 | COMP9242T2/2019 W10



More Cache-related Serialisation

False sharing
- Unrelated data structs share the same cache line

- Accessed from different processors
=» Cache coherence traffic and delay

Cache line bouncing
- Shared R/W on many processors
- E.g: bouncing due to locks: each processor spinning on a lock brings it into its own cache

=» Cache coherence traffic and delay

Cache misses
- Potentially direct memory access = stalls self

- When does cache miss occur?
* Application accesses data for the first time, Application runs on new core

* Cached memory has been evicted
* Cache footprint too big, another app ran, OS ran

% | > I
13 | COMP9242T2/2019 W10



IANININANSNS 2N NS IANINIONNSN N NS VNSNS AN NN SN NSNS

| . I .. I . | L I || I

rd
I DATA
b1
N7~




Multi-What?

* Terminology:
- core, die (chip), package (module, processor, CPU)

* Multiprocessor, SMP
- >1 separate processors, connected by off-processor interconnect

* Multithread, SMT
- >1 hardware threads in a single processing core

* Multicore, CMP
- >1 processing cores in a single die, connected by on-die interconnect

* Multicore + Multiprocessor
- >1 multicore dies in a package (multi-chip module), on-processor interconnect
- >1 multicore processors, off-processor interconnect

* Manycore
- Lots (>100) of cores

% | > I
15 | COMP9242T2/2019 W10



Interesting Properties of Multiprocessors

* Scale and Structure
- How many cores and processors are there
- What kinds of cores and processors are there
- How are they organised (access to 10, etc.)

* Interconnect
- How are the cores and processors connected

* Memory Locality and Caches
- Where is the memory
- What is the cache architecture

* Interprocessor Communication
- How do cores and processors send messages to each other

% | > I
16 | COMP9242T2/2019 W10



Contemporary Multiprocessor Hardware

* Intel:

Nehalem, Westmere: 10 core, QPI

Sandy Bridge, Ivy Bridge: 5 core, ring bus, integrated GPU, L3, IO

Haswell (Broadwell): 18+ core, ring bus, transactional memory, slices (EP)
Skylake (SP): mesh architecture

* AMD:
- K10 (Opteron: Barcelona, Magny Cours): 12 core, Hypertransport
- Bulldozer, Piledriver, Steamroller (Opteron, FX)
* 16 core, Clustered Multithread: module with 2 integer cores
- Zen: on die NUMA: CPU Complex (CCX) (4 core, private L3)
- Zen 2: chiplets (2xCCX) chiplets, 10 die (incl mem controller)

* Oracle (Sun) UltraSparc T1,T2,T3,T4,T5 (Niagara), M5,M7
- T5:16 cores, 8 threads/core (2 simultaneous), crossbar, 8 sockets,
- M8: 32 core, 8 threads, on chip network, 8 sockets, 5GHz

* ARM Cortex A9, A15 MPCore, big.LITTLE, DynamIQ
- 4 -8 cores, big.LITTLE: A7 + A15, dynamIQ: A75 + A55

% | > I
17 | COMP9242T2/2019 W10



Scale and Structure

* ARM Cortex A9

ARM CoreSight™ MulticoreDebug and Trace Architecture

PTM
IFPUINEONJ VF

PTM
FPUINEONJ VF

}:PUINEO

o T

PTM
[FPUINEONI VE

Fonex—ﬁ& CPU Fortex-A? CPU

Cortex-A9 CPU

Forcex-ﬁ& CPU

L Cache D-cw\i \Cache [Dc,c..i

I-Cache

=

I-Cache D-Cacnel

Generic

Snoop Control Unit (SCU)

Accelerator

Interrupt Control '
and Distribution ] Cache-2-Cache
Transfers

Snoop

Filtering

Coherency
Timers Port

Advanced Bus Interface Unit

Primary AMBA 3 64bit Interface

OO0O0O00000a Ml

Cortex"-A9 MPCore

ional 2™I/F with Address Filtering

A B BB BB R ER BB

"B B B B B B EEE BE

% | DATAI



Scale and Structure

* ARM big.LITTLE

GIC-400

Interrupts Interrupts

Memory Controller System Port
Ports

e
G

N~

19 | COMP9242 T2/2019 W10




Scale and Structure

Conventional DynamlQ
big.LITTLE big.LITTLE

Quad 1b+2L 1b+3L
Cortex-A53

Octa 1b+4L 1b+7L
Cortex-A53

20 | COMP9242T2/2019 W10



Scale and Structure

* Intel Nehalem

8 & 5 T intel® SMB |
4 DIMM Slots = EESNE]
4 DIMM Siots == [TTEEENE]

INE=RESEE] == 4 DiMM Siots
[I=ESEEY == 4 DiMM Siots
I=ESEE] — 4 DIMM Siots
IM=ESEE] == 4 DIMM Siots

24-MB Shared L3 Cache “ 24-MB Shared L3 Cache

intel* QPI

Intel® 7500

Iintel®* 7500
Chipset

Chipset

intel* QPI

M=ty c] = 4 DIMM Slots
(i piyglc) == 4 DIMM Siots

[ sy =4 DIMM Slots
=g =] == 4 DIMM Siots

4 DIMM Slots s |7370= S =]
4 DIMM Slots mmm § 7510 (=)
intel®* SMB

24-MB Shared L3 Cache ' ' 24-MB Shared L3 Cache

— - u ~]o@
@| @ g o| @

2 22|22 El =S

% | a |
21 | COMP9242T2/2019 W10



Memory Locality and Caches

* NUMA (Non-Uniform Memory Access)

4 DIMM Siots == [ITTEESUE]
4 DIMM Siots — PTEESNE]L
4 DIMM Siots == [TTEEENE]

~J wn ~j]
=] & ge
S S S

24-MB Shared L3 Cache

Iintel® 7500

Chipset

4 DIMM Slots s |7370= S =]

ntel® SMB

intel® SMB
4 DIMM SioTS ==

24-MB Shared L3 Cache

P ‘e ‘s |3
@ |
HE BH HE BH

4 DIMM Slots ===

22 |

COMP9242 T2/2019 W10

)

intel* QPI

intel* QPI

=)

intel” SMB Ry
[I=ESEE] — 4 DiMM Siots
[AEESEE] == 4 DIMM Slots

Intel® 7500

Chipset

24-MB Shared L3 Cache

~J m | < ~ ]
efl @2 g| @

M=ty c] = 4 DIMM Slots
(i piyglc) == 4 DIMM Siots
[ sy =4 DIMM Slots

=g =] == 4 DIMM Siots

e
DATA |
b1

N~



Interconnect

* AMD Barcelona

sata <

e  Cmm
SATA _
pcle <
coe <

» - RAm |

Floppy disk drive

e

I DATA
b1

N~

23 | COMP9242T2/2019 W10




Interconnect (Latency)

L1: 2
L2: 15| 130

130 || 130 || <D > >

L3: 75 190 260

i 1 X |

N g N g >

190 260 332 369

% | > I
24 | COMP9242T2/2019 W10




Interconnect (Bandwidth)

Node O — — —
Node 6 [— — i «——Node 7
3GB/s 6GB/s mmmsen 4GB/s-3GB/s <—— Unidirectional

e
DATA
b1

25 | COMP9242 T2/2019 W10 % N~



Intercon nECt FB DIMM FB DIMM FB DIMM FB DIMM

i | i |

* Oracle Sparc T2

Full Cross Bar

FrPU PN FrU B FPU R FrU fN FPU B FPU TR FPU [N FPU
spu 'l spu [l spuU [l spu Tl spU | sPU Bl spU [N sPU

|

NIU Sys I/F
(Ethernet+) Buffer Switch Core
2x 10 Power <95 W x8 @ 2.0 GHz -
Gigabit Ethernet | DATA |
61

26 | COMP9242 T2/2019 W10 Fro Oracle™



Interconnect

Haswell EP Die Configurations

14-18 Core (HCQ) 4-8 Core (LCQ)
JLILIL ]

e e

Not representative of actual die-sizes, orientation and layouts — for informational use only.

Chop Columns Home Agents Cores Power (W) Transitors (B) Die Area (mm?2)
HCC 4 2 14-18 110-145 5.69 662
MCC 3 2 6-12 65-160 3.84 492

LCC 2 1 4-8 55-140 2.60 354

(intel.

G

27 | COMP9242T2/2019 W10 ~7



Interconnect/Structure/Memory

Cluster on Die (COD) Mode

= Supported on 1S & 2S SKUs with 2 Home Agents
(10+ cores)

= |In memory directory bits & directory cache used on
2S to reduce coherence traffic and cache-to-cache
transfer latencies

= Targeted at NUMA optimized workloads where
latency is more important than sharing across
Caching Agents

= Reduces average LLC hit and local memory latencies

= HA sees most requests from reduced set of threads
potentially offering higher effective memory bandwidth

= OS/VMM own NUMA and process affinity decisions

28 | COMP9242T2/2019 W10

COD Mode for 18C E5-2600 v3

Cho
LLC

Cho
LLC

Cbo
LLC

Cbho
LLC

e
DATA I
b1

N~



Experimental/Future/Non-mainstream Multiprocessor
Hardware

* Microsoft Beehive
- Ring bus, no cache coherence

* Tilera (now Mellanox) Tile64, Tile-Gx
- 100 cores, mesh network

* Intel Polaris
- 80 cores, mesh network

* Intel SCC

- 48 cores, mesh network, no cache coherency

* Intel MIC (Multi Integrated Core)

- Knight’s Corner/Landing - Xeon Phi
- 60+ cores, ring bus/mesh

DATA

e
| 61
=7



Scale and Structure

* Tilera Tile64 (newest: Mellanox TILE-GXx), Intel Polaris

DDR2 Controller 1

DDR2 Controller 0

L

DDR2 Controller 2

DDR2 Controller 3

30 | COMP9242T2/2019 W10




Cache and Memory and IPC

* Intel SCC

e
DATA |
b1

31 | COMP9242T2/2019 W10 N~



Interprocessor Communication

* Beehive

Modulke RISCN

Module RISCN

Module RISCN

Module RISCN

| Cere N ¢ - 4— Core3 4 |4 CoreZe— |@&— Corel<4 |4
AN A s o~
Ringin[31:0],
SlotTypein[3.0),
Srclestin{3:0]
Module MemMux
— > > MO Mossages, LOoJks
FAN
WD
At cisplary RA, |DDR Controler| BR ( bits) | .\I Rdratum (32 bis)
ontrolie WA || ippelined bus to
—— = all cores)
F 3
-
RD to
Display
controller

32 | COMP9242T2/2019 W10

DOR2Z DiMMs

e
DATA
b1

N~



Interconnect
* Intel MIC (Multi Integrated Core) (Knight’s Corner/Landing - Xeon Phi)

DATA

= |5 g
| &1
=7



Skylake SP

| DATA I

34 | COMP92427T2/2019 W10




Summary
* Scalability

- 100+ cores
- Amdahl’s law really kicks in

* Heterogeneity
- Heterogeneous cores, memory, etc.

- Properties of similar systems may vary wildly (e.g. interconnect topology and latencies between
different AMD platforms)

* NUMA

- Also variable latencies due to topology and cache coherence

* Cache coherence may not be possible
- Can’t use it for locking
- Shared data structures require explicit work

* Computer is a distributed system
- Message passing
- Consistency and Synchronisation
- Fault tolerance

% | > I
35 | COMP9242T12/2019 W10



NN NNSN N NS NN NNSN N NN NN\ NS NN SN NSNS\

rd
I DATA
b1
N7~



Optimisation for Scalability

* Reduce amount of code in critical sections
- Increases concurrency

- Fine grained locking

* Lock data not code
* Tradeoff: more concurrency but more locking (and locking causes serialisation)

- Lock free data structures

* Avoid expensive memory access
- Avoid uncached memory
- Access cheap (close) memory

% | > I
37 | COMP92427T2/2019 W10



Optimisation for Scalability

* Reduce false sharing
- Pad data structures to cache lines

* Reduce cache line bouncing
- Reduce sharing
- E.g: MCS locks use local data

* Reduce cache misses
- Affinity scheduling: run process on the core where it last ran.
- Avoid cache pollution

% | > |
38 | COMP92427T2/2019 W10



OS Design Guidelines for Modern (and future)

Multiprocessors

* Avoid shared data
- Performance issues arise less from lock contention than from data locality

* Explicit communication
- Regain control over communication costs (and predictability)
- Sometimes it’s the only option

* Tradeoff: parallelism vs synchronisation
- Synchronisation introduces serialisation
- Make concurrent threads independent: reduce crit sections & cache misses

* Allocate for locality
- E.g. provide memory local to a core

* Schedule for locality
- With cached data
- With local memory

* Tradeoff: uniprocessor performance vs scalability

% | > I
39 | COMP92427T2/2019 W10



Design approaches

* Divide and conquer
- Divide multiprocessor into smaller bits, use them as normal
- Using virtualisation
- Using exokernel

* Reduced sharing

- Brute force & Heroic Effort

* Find problems in existing OS and fix them

* E.g Linux rearchitecting: BKL -> fine grained locking
- By design

* Avoid shared data as much as possible

* No sharing
- Computer is a distributed system
* Do extra work to share!

% | > I
40 | COMP9242T2/2019 W10



Divide and Conquer

Disco
- Scalability is too hard!

* Context:
- ca. 1995, large ccNUMA multiprocessors appearing

- Scaling OSes requires extensive modifications

* Idea:
- Implement a scalable VMM
- Run multiple OS instances

* VMM has most of the features of a scalable OS:
- NUMA aware allocator
- Page replication, remapping, etc.

* VMM substantially simpler/cheaper to implement

* Modern incarnations of this
- Virtual servers (Amazon, etc.)
- Research (Cerberus)

% | > I
41 | COMP9242T2/2019 W10



Disco Architecture

o2 G| [@)][@
O
OS SMP-OS OS OS Thin OS
PE PE PE PE PE PE PE PE
| [ I I | I
é’ Interconnect JD'

ccNUMA Multuprocessor

[Bugnion et al., 1997]

42 | COMP9242T2/2019 W10

e
DATA
b1

N~



Disco Performance

D —
£ I Idle
= 160 - 7 M Disco
.% Sync
g 140 - 136 - Kernel
) User_stall
g 120 - 4 User
= 100 100
e 100 92 _
g 86

80 — —

64

60 — 60 —

40 - 34

20 — —

IRIX 1VM 2VM 4VM 8VM 8VM/nfs IRIX SplashOS |
pmake RADIX

w I > I
43 | COMP9242T2/2019 W10



Space-Time Partitioning

Tessellation
- Space-Time partitioning
- 2-level scheduling

* Context: |<—Application Partitions—>| I‘_(S)::\:::t;nlgaft{: :)en"s‘—bl
- 2009-... highl
enly Threads Threads Threads Threads

s SETEREEE 1 STETE 1 EREEE 1 SIS

- Berkeley Par Lab Application Application Parallel Network
Runtime Runtime File Sys. Service
Runtime Runtime

Tessellatlon OS (space-time partitioning)
i

Multlcore Hardware

% | DATA |
44 | COMP9242 T2/2019 W10



Tessellation

Library OS
Functionality

Application

Custom

Scheduler

Resource

Queries/Req uestsl l

Partition
Resizing

(Real-Time, Priority)

Scheduling
Constraints

Partition
Management
Layer

Partition

Allocator

Space Scheduling Time Scheduling T_l
Partition

Scheduler

Mechanism

Partition

(Trusted)

i iti QoS
Layer Implementation nforcemen

Channel
Authenticator

uoje||assad

= WIoY

Interconnect
Bandwidth

Message
Passing

Cache

Physical
Memory

CPUs

Performance
Counters

Hardware Partitioning Mechanisms

45 | COMP9242T2/2019 W10

% | DATAI



Reduce Sharing

K42

* Context:
- 1997-2006: OS for ccNUMA systems
- IBM, U Toronto (Tornado, Hurricane)

* Goals:
- High locality
- Scalability

* Object Oriented
- Fine grained objects

* Clustered (Distributed) Objects
- Data locality

* Deferred deletion (RCU)
- Avoid locking

* NUMA aware memory allocator
- Memory locality

% | a |
46 | COMP9242T2/2019 W10



K42: Fine-grained objects

Traditional System OO Decomposed System

User-level
requests
System paths &
data structures
used to satisfy
requests

e much sharing e much less sharing

e better performance
[Appavoo, 2005]

% | >
47 | COMP9242 T2/2019 W10



K42: Clustered objects

* Globally valid object reference

* Resolves to
- Processor local representative

* Sharing, locking strategy local to each object

* Transparency
- Eases complexity
- Controlled introduction of locality

* Shared counter:
- inc, dec: local access
- val: communication

* Fast path:
- Access mostly local structures

Proc O Proc 1 Proc 2

e
DATA

48 | COMP9242T2/2019 W10 N~



K42 Performance

] —— Linux 2.4.19 L
1 —— - K42 Shared VM Objects -
30000 ------ K42 Distributed VM Objects 2
] .
nz'
] =
S 20000 =TT
(=) i .
=
o
=
|—
10000
O i T |

5 10 15 20

pd
Processors | DATA
B1
=7



Corey

* Context
- 2008, high-end multicore servers, MIT

* Goals:
- Application control of OS sharing

* OS
- Exokernel-like, higher-level services as libraries
- By default only single core access to OS data structures
- Calls to control how data structures are shared

* Address Ranges
- Control private per core and shared address spaces

* Kernel Cores
- Dedicate cores to run specific kernel functions

* Shares
- Lookup tables for kernel objects allow control over which object identifiers are visible to other cores.

% | > I
50 | COMP9242T12/2019 W10



Linux Brute Force Scalability

* Context
- 2010, high-end multicore servers, MIT
* Goals:
48
- Scaling commodity OS aal ok
. o 40
* Linux scalability a6
(2010 — scale Linux to 48 cores) 321
28
24 -
20 -
16
12 -
8_4
4
o memcached PostgreSQL Psearchy
Apache gmake Metis

Y-axis: (throughput with 48 cores) / (throughput with one core)

% | >
51 | COMP9242T2/2019 W10



Linux Brute Force Scalability

* Apply lessons from parallel computing and past research
- sloppy counters,
- per-core data structs,
- fine-grained lock, lock free,
- cache lines
- 3002 lines of code changed

'8 —
£ S
(&)

S QL
O o>
= @
@ o
e a

Psearchy

Mount tables

Open file table
Sloppy counters -—---—

Lock-free dentry lookup -----—

Super pages
DMA buffer allocation ______

Network stack false sharing
Parallel accept ---—-—

Application modifications
* Conclusion:

- no scalability reason to give up on traditional operating system organizations just yet.

% | > I
52 | COMP92427T12/2019 W10




Scalability of the API

* Context
- 2013, previous multicore projects at MIT

* Goals
- How to know if a system is really scalable?

* Workload-based evaluation
- Run workload, plot scalability, fix problems
- Did we miss any non-scalable workload?
- Did we find all bottlenecks?

* Is there something fundamental that makes a system non-scalable?
- The interface might be a fundamental bottleneck

% | > I
53 | COMP92427T12/2019 W10



Scalable Commutativity Rule

* The Rule

- Whenever interface operations commute, they can be implemented in a way that scales.

* Commutative operations:
- Cannot distinguish order of operations from results
- Example:
* Creat:
* Requires that lowest available FD be returned
* Not commutative: can tell which one was run first

* Why are commutative operations scalable?
- results independent of order = communication is unnecessary
- without communication, no conflicts

* Informs software design process
- Design: design guideline for scalable interfaces
- Implementation: clear target
- Test: workload-independent testing

% | > I
54 | COMP92427T2/2019 W10



Commuter: An Automated Scalability Testing Tool

Symbolic model

éCommutativity%
conditions

Test cases

Conflicting cache lines

55 | COMP9242 T2/2019 W10

open
link
unlink
rename
stat

fstat
Iseek
close
pipe

read
write
pread
pwrite
mmap
munmap
mprotect
memread
memwrite

open
link
unlink
rename
stat

fstat
Iseek
close
pipe

read
write
pread
pwrite
mmap
munmap
mprotect
memread
memwrite

£Rgg o (Linux 3.8, ramfs)
ég‘éé%.&gmbomxu gé c
svasEsoE LY =xD
EEEEEASSSESEEEESES

All tests

conflict-free
All tests
conflicted

Lo
E a
S8E8, 2
=B Lo r—
EECECEES Lo udTRuEELT
LS g&:gg-_o_musgfco.
EEEEE c=zPocoeL,EsES (SV6)

All tests
conflict-free
All tests
conflicted

I DATA
\ '



FlexSC

Syscall impact on user-mode IPC

* Context: 1S
- 2010, commodity multicores g ::
o o 1
- U Toronto é’ © 0.9 Lost performance (cycles)
£ 807 \
* Goal: 29,
0.

. Syscall exception
- Reduce context switch overhead of system calls : : -

Time (in cycles)

* Syscall context switch:
- Usual mode switch overhead
- But: cache and TLB pollution!

0 2000 4000 6000 8000 10000 12000 14000 16000

Syscall Instructions Cycles IPC i-cache d-cache L2 L3 d-TLB
stat 4972 13585 0.37 32 186 660 2559 21
pread 3739 12300 0.30 32 294 679 2160 20
pwrite 5689 31285 0.18 50 373 985 3160 44
open+tclose 6631 19162 0.34 47 240 900 3534 28
mmap-4munmap 8977 19079 0.47 41 233 869 3913 7
opentwritetclose 9921 32815 0.30 78 481 1462 5105 49

56 | COMP9242T12/2019 W10

| 61
N~



FlexSC

* Asynchronous system calls
- Batch system calls
- Run them on dedicated cores

* FlexSC-Threads
- MonN
- M>>N

Kernel
2222  \e=
A

57 | COMP92427T12/2019 W10



FIexSC Results

— —~ 45000
2 4oooo ® flexsc & 40000 & flexsc
¥ 35000 % sync g 35000 % sync
- 2
g g
2 3
= £Z
g g
e o
= , _ = . } } ) )
- 0 200 400 600 800 1000 - 0 200 400 600 800 1000
Request Concurrency Request Concurrency
(a) 1 Core (b) 2 Cores
2
b
— |
Apache g
. S g
FlexSC: batching, s
H =
sys call core redirect > & floxsc
‘9: o ' _ ' _ ¥ sync
- 0 200 400 600 800 1000

Request Concurrency | DATA |
58 | COMP9242 T2/2019 W10 (c) 4 Cores %




No sharing

* Multikernel
- Barrelfish
- fos: factored operating system

| Traditional OSes > < Multikernel |

g -
Shared state, Finer-grained Clustered objects, Distributed state,
one-big-lock locking partitioning replica maintenance

% | a |
59 | COMP92427T2/2019 W10



Barrelfish

* Context:
- 2007 large multicore machines appearing
- 100s of cores on the horizon
- NUMA (cc and non-cc)
- ETH Zurich and Microsoft

* Goals:
- Scale to many cores
- Support and manage heterogeneous hardware

* Approach:
- Structure OS as distributed system

* Design principles:
- Interprocessor communication is explicit

- OS structure hardware neutral
- State is replicated

* Microkernel
- Similar to selL4: capabilities

% | > |
60 | COMP9242T2/2019 W10



Barrelfish

User
space:

Kernel

space:

Hardware:

% | > I
61 | COMP92427T2/2019 W10

App App App
Monitor Monitor =~ ~ | ==
URPC
CPU CPU
driver driver Send IPI
x86-64 x86-64
CPU / APIC CPU/APIC =
MMU MMU Cache-coherence,
Interrupts

App

Monitor

CPU
driver
X86-64
CPU / APIC
MMU




Barrelfish: Replication

* Kernel + Monitor:
- Only memory shared for message channels

* Monitor:
- Collectively coordinate system-wide state

* System-wide state:
- Memory allocation tables
- Address space mappings
- Capability lists
* What state is replicated in Barrelfish
- Capability lists
* Consistency and Coordination

- Retype: two-phase commit to globally execute operation in order
- Page (re/un)mapping: one-phase commit to synchronise TLBs

% | > I
62 | COMP9242T2/2019 W10



Barrelfish: Communication

* Different mechanismes:
- Intra-core
* Kernel endpoints
- Inter-core
* URPC

* URPC sender > receiver

- Uses cache coherence + polling
- Shared bufffer
* Sender writes a cache line
* Receiver polls on cache line v
* (last word so no part message)
- Polling?
* Cache only changes when sender writes, so poll is cheap
* Switch to block and IPI if wait is too long.

% | > I
63 | COMP9242T12/2019 W10




Barrelfish: Results

* Message passing vs caching

12
SHME8 —=&—
SHMg —&—
10 F SHM2 ——<—
. SHM1 ————
S MSG8 —v—
S 8 F MSG1 ——
% Server _
& =
:53 ° o /
= =
= = /
& —
2[
L —= — , , . + : 4
o . = —o——% © e e e e e
2 4 6 10 12 14

64 | COMP9242T2/2019 W10

16 %lnﬁml



Barrelfish: Results

* Broadcast vs Multicast

14
Broadcast ———
Unicast ——«—
12 F Multicast ————
NUMA-Aware Multicast —=—
S 10 F
©
X
wn S8 F
QL
=,
2 s
(@)
(-
= i
LIB 4 — — = = ] = i
2
O 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32$|€1¢\m|
N~

65 | COMP9242T2/2019 W10



Barrelfish: Results

* TLB shootdown

60 -
Windows ————
Linux +——<——
so | Barrelfish ———
)
o
S 40 [
<
w
L
S 307r
=
o)
o 20 |
5 -
—1 ‘ ——
e L — —
10 ¢ ‘5> -
=
O [ ] [ ] [ ] [ ]

10 12

14 16 18 20 22 24 26 28 30 32

66 | COMP9242T2/2019 W10

% | DATAl



INININANSNS 2N NS IANINIONNSN N NS .' NN\ AN /\/\/\ \/\/\

NN\ \/\/\/\/\/\/\/ / 7~ /\/\/\/\/ /\/\/\/\ \ ~N 7 /\/\/

|

@




Summary

* Trends in multicore
- Scale (100+ cores)
- NUMA
- No cache coherence
- Distributed system
- Heterogeneity

* OS design guidelines
- Avoid shared data
- Explicit communication
- Locality

* Approaches to multicore OS
- Partition the machine (Disco, Tessellation)
- Reduce sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
- No sharing (Barrelfish, fos)

% | a |
68 | COMP9242T2/2019 W10



