School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

UNSW |

il
SYDNEY University.

2019 T2 Week 09a
Formal Verification and seL4
@GernotHeiser

1

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 3.0 License

* You are free:
+ to share—to copy, distribute and transmit the work
* to remix—to adapt the work

« under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 2019T2 W09a: Verification and seL4. © Gemot Heiser 2019 — CC Attribution License. UNSW

Assurance and Verification

2 COMP9242 2019T2 W0Sa: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

Refresher: Assurance and Formal Verification

« Assurance:
« systematic evaluation and testing
« essentially an intensive and onerous form of quality assurance

« Formal verification:
+ mathematical proof

Assurance and formal verification

aim to establish correctness of

* mechanism design
mechanism implementation

« Certification: independent examination
« confirming that the assurance or verification was done right

COMP9242 2019T2 W09a: Verification and seL4 © Gemnot Heiser 2019 — CC Attribution License UNSW

Assurance: Substantiating Trust

« Specification
» Unambiguous description of desired behaviour

» System design Compelling argument
« Justification that it meets specification o el pieiei

* Implementation
« Justification that it implements the design

Informal (English)
or formal (maths)

Code inspection,
rigorous testing,
proof

* Maintenance
« Justifies that system use meets assumptions
Fusw

4 COMP9242 2019T2 WO09a: Verification and seL4 © Gernot Heiser 2019 - CC Attribution License.

Common Criteria

« Common Criteria for IT Security Evaluation [ISO/IEC 15408, 99]
+ ISO standard, for general use
 Evaluates QA used to ensure systems meet their requirements
+ Developed out of the famous US DOD “Orange Book™:
Trusted Computer System Evaluation Criteria [1985]
« Terminology:
« Target of evaluation (TOE): Evaluated system
« Security target (ST): Defines requirements
« Protection profile (PP): Standardised ST template
+ Evaluation assurance level (EAL): Defines thoroughness of evaluation
* PPs have maximum EAL they can be used for

5 COMP9242 2019T2 Woga: Verfication and seL4 © Gernot Heiser 2019 - CC Afrbution License UNsw

CC: Evaluation Assurance Levels

Level |Requirements |Specification |Design Implementation

§ EAL1 |not evaluated |Informal not eval not evaluated

9; EAL2 |not evaluated |Informal Informal not evaluated

_ué EAL3 |not evaluated |Informal Informal not evaluated

§’ EAL4 |not evaluated |Informal Informal not evaluated

E EAL5 |not evaluated |Semi-Formal |Semi-Formal |Informal

= EAL6 |Formal Semi-Formal |Semi-Formal |Informal
EAL7 |Formal Formal Formal Informal

COMP9242 2019T2 WO9a: Verification and seL4 © Gernot Heiser 2019 - CC Attribution License. @ UNSW

7 COMP9242 201972 W09a: Verification and seL4

Common Criteria: Protection Profiles (PPs)

« Controlled Access PP (CAPP)
« standard OS security, up to EAL3

« Single Level Operating System PP
» superset of CAPP, up to EAL4+

* Labelled Security PP (LSPP)
* MAC for COTS OSes

* Multi-Level Operating System PP
« superset of CAPP, LSPP, up to EAL4+

« Separation Kernel Protection Profile (SKPP)
« strict partitioning, for EAL6-7

© Gemot Heiser 2019 — CC Attribution License @ UNSW

COTS OS Cetrtifications

« EAL3:
+ 2010 Mac OS X (10.6)
* EAL4:
+ 2003: Windows 2000
* 2005: SUSE Enterprise Linux
« 2006: Solaris 10 (EAL4+)
« against CAPP (an EAL3 PP!)
« 2007: Red Hat Linux (EAL4+)
« EALG:
+ 2008: Green Hills INTEGRITY-178B (EAL6+)
« against SKPP, relatively simple PPC-based hardware platform in TOE
« EALT:
« 2019: Prove & Run PROVENCORE

Get regularly
hacked!

COMP9242 2019T2 W09a: Verification and seL4 © Gemnot Heiser 2019 — CC Attribution License UNSW

9 COMP9242 2019T2 W09a: Verification and seL4

SKPP on Commodity Hardware

« SKPP: OS provides only separation
« One Box One Wire (OB1) Project
» Use INTEGRITY-178B to isolate VMs on commodity desktop hardware

* Leverage existing INTEGRITY certification
« by “porting” it to commodity platform

NSA subsequently dis-endorsed SKPP,
L discontinued certifying 2EAL5

Conclusion [NSA, March 2010]:

« SKPP validation for commodity hardware
platforms infeasible due to their complexity

« SKPP has limited relevance for these platforms

© Gemnot Heiser 2019 — CC Attribution License UNSW

10

Common Criteria Limitations _

* Very expensive Effectively dead
« rule of thumb: EAL6+ costs $1K/LOC ~ in 5-Eyes defence
design-implementation-evaluation-certification . -
» Too much focus on development process
« rather than the product that was delivered
» Lower EALs of little practical use for OSes
« c.f. COTS OS EALA4 certifications
« Commercial Licensed Evaluation Facilities licenses rarely revoked
« Leads to potential “race to the bottom” [Anderson & Fuloria, 2009]

COMP9242 2019T2 WO09a: Verification and seL4 © Gernot Heiser 2019 - CC Attribution License. @ UNSW

Formal Verification

« Prove properties about a mathematical model of a system

Model checking / abstract interpretation:
« Cannot generally prove code correct

« Proves specific properties

« Has false positives or Theorem proving:

false negatives (unsoundness) « Can deal with large (even

« Suffers state-space explosion infinite) state spaces
* May scale to large code bases Can prove functional
correctness against a spec
Very labour-intensive

Recent work automatically
proved functional correctness of
simple systems using SMT
solvers [Hyperkernel, SOSP’17]

1 COMP9242 2019T2 W09a: Verification and seL4.

© Gernot Heiser 2019 — CC Attribution License UNSW

Model Checking and Linux: A Sad Story

« Static analysis of Linux source [Chou & al, 2001]

« Found high density of bugs, especially in device drivers
* Re-analysis 10 years later [Palix & al, 2011] Disappointing rate of
improvement for bugs that

. i _ are automatically detectable!
Fa‘ult ratt‘e by dlrﬁctory [P‘allx’11]‘ - —

""" Average
—=a— Staging
—o— Drivers
—e— Sound

Arch
% FS

Net
—=— Other

% of faulty notes

T
08 09 10

© Gernot Heiser 2019 — CC Attribution License @ UNSW

12 COMP9242 2019T2 WO9a: Verification and seL4

And the Result?

| @ TecincA o i i o s anod

RISK ASSESSMENT —

Unsafe at any clock speed:
Linux kernel security needs a
rethink

Ars reports from the Linux Security Summit—and finds much work
that needs to be done.

JM. PORUP (UK) - 9/27/2016, 10:57 PM

BlueBorne

N\ e e e

13 COMP9242 2019T2 W09a: Verification and seL4. © Gemot Heiser 2019 — CC Attribution License UNSW

4

14 COMP9242 2019T2 W09a: Verification and seL4 © Gemnot Heiser 2019 — CC Attribution License UNSW

A NICTA bejelentette a vilag els, formalis médszerekkel igazolt,

August 2009

New Scientist
Saturday 29/8/2009
Pl Stories Recent Popular Searc Page: 21

Section: General News
Region: National

Slashdot is powered by your sub Type: Magazines Science / Technology
®®™= Size:196.31 sq.cms.

A Y — = Published: S~

Posted by Soulskill on Thursday Aug
The ultimate way to keep your

from the walt-for-It dept.

An anonymous reader writes
“opersing sysms wsay e COMPUter safe from harm
and so forth are known by almos
to prove that a particular OS ken . “kemel’ that and .
formally verified, and as such it « eave them prone to occasional says Kiein.

researchers used an executable
the Isabelle theorem prover to ge Sothe
matches the executable and the

Does it run Linux? "We're pleased to .
[F === e

= 4
erea natosagor rvertsl, amely e

15 COMP9242 2019T2 W09a: Verification and seL4 © Gemot Heiser 2019 — CC Attribution License @ UNSW

LISTS | INNOVATORSUNDER35 | DISRUPTIVECOMPANIES | BREAKTHROUGH TECHNOLOGES

|0 BREAKTHROUGH
TECHNOLOGIES

Crash-Proof Code

Making critical software safer

7 comments
WILLIAM BULKELEY

S 8

16 COMP9242 2019T2 WO09a: Verification and seL4 © Gernot Heiser 2019 — CC Altribution License. @ UNSW

@ <=4 Proving Security and Safety

Isolation properties
[ITP'11, S&P"13] Abstract World’s fastest

Model microkernel!
Functional correctness
[SOSP09]

C Imple- " Exclusions (at present):
mentation « Kernel initialisation not yet verified
* MMU & caches modelled abstractly
« Multicore not yet verified
< Covert timing channels not precluded y

Integrity
e

Translation correctness

[PLDI"3]

Worst-case
execution time
[RTSS11, RTAS'16]

17 COMP9242 201972 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License. @

18

4 Proving Functional Correctness

Abstract
Model
E 117,000 lop
Executable
Model
E 50,000 lop

C Imple-
mentation

Refinement: all possible
implementation behaviours

From Haskell are captured by the model

COMP9242 2019T2 WO9a: Verification and seL4

© Gernot Heiser 2019 ~ CC Attribution License g UNSW

@214 Proving Functional Correctness

constdefs

: "unit s_monad"
“schedule = do
threads « allActiveTCBs;
thread « select threads:
do_machine_op flushCaches OR return ();

modify (As. s (cur_thread := thread))
od"
schedule :: Kernel ()
schedule - do

action <- getScheduleraction
case action of

mally -> do
ad <- getCurThread
- isRunnable curThread
threadGet tcbTimeSlice curThread
ot runnable || time -- 0) chooseThread

voig
SetPrioritulieb_t *tpte, prio_t prio) §
brio_t oldprio;

iF(taread_state_get_tobQueusd(tptro>tobstatel) {
sigorio = totr-Tecstrioritg
rio) = teb

F{iaRimabls(tptr)) T o

3
olse §
threa_state_pur_set_tebQueued(ktptr-ytebState, “slcc);

3

tptr-ytebPriority = pric;

id
EelaTo(reh s vrargan) €
targeto>tebTineSlios += keDurThread->tebTingSlice:

19 COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 - CC Attribution License.

4 Functional Correctness Summary

i i Can prove
Kinds of properties proved _ further properties
« Behaviour of C code is fully captured by abstract model on abstract level!

Behaviour of C code is fully captured by executable model
Kernel never fails, behaviour is always well-defined N

@214 Binary Code Verification

Target of functional
correctness proof

f C source ‘ — [Formalised C

Formal .
C semantics l ﬂe_]
rules

_ ‘ Bugs found: Functional dssmh, Functional

« assertions never fail - 16 in (shallow) testing b oo

« will never de-reference null pointer « 460 in verification . SAT solver '

< will never access array out of bounds + 160inC, De-compiler

« cannot be subverted by misformed input + 150in design, A N =
+ All syscalls terminate, reclaiming memory is safe, ... o TEDIErES ’ f F i —— 527,

Symbo! ary code
« Well typed references, aligned objects, kernel always mapped... tables etc Formal ISA spec l
« Access control is decidable
20 COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW 21 COMP9242 2019T2 W09a: Verification and seL4 © Gemot Heiser 2019 — CC Attribution License @ UNSW
| .] PR .
@54 Isolation Goes Deep @ 2.4 Integrity: Control Write Access
p
| Event-based kernel
@ ® o always operates on be-
N L .
) ﬁ(ernel data p half of well-defined user:
_ partitioned G + Prove kernel only
\C like user data o it ; f modifies data if
- Low has no write capabilities to High objects presented write cap
= no action of Low will modify High state
Specifically, kernel does not modify on Low’s behalf!
22 COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

23 CCOMP9242 2019T2 W09a: Verification and seL4. © Gemot Heiser 2019 — CC Attribution License @ UNSW

@524 Availability: Ensuring Resource Access

High ‘

(Nothing to do, implied)
by other properties!

P .
Strict separation of kernel resources ‘

= Low cannot deny High access to resources
A 4

24 COMP9242 2019T2 WO9a: Verification and seL4

© Gernot Heiser 2019 — CC Altribution License. @

@ =14 Confidentiality: Control Information Flow

Violation not
observable
by High!

Non-interference proof:
« Evolution of Low does not depend on High state
« Also shows absence of covert storage channels

Low has no read capabilities to High objects

‘ To prove: N
.= no action will reveal High state to Low

25 COMP9242 201972 W09a: Verification and seL4 © Gernot Heiser 2019 - CC Attribution License @

@::4 Confidentiality Proof Challenge

Spec Implementation
bool a0); | Idiotic but valid refinement bool a0 {
o return !secret;
bool b0 { - o
) Non-determinism
int secret; . P
} ~ breaks confidentiality
~under refinement!
Solution: .

T
Infoflow is very strong
property, requiring
restrictions rarely met
in real world

+ Remove non-determinism vgjhge
it affects confidentiality
_* Eg: scheduler strictly round-robin

@ =4 Verification Assumptions

1. Hardware behaves as expected
+ Formalised hardware-software contract (ISA)
« Hardware implementation free of bugs, Trojans, ...

2. Spec matches expectations
« Can only prove “security” if specify what “security” means
+ Spec may not be what we think it is

3. Proof checker is correct
« Isabel/HOL checking core that validates proofs against logic

With binary verification do
_ not need to trust C compiler!

26 COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License 27 CCOMP9242 2019T2 W09a: Verification and seLd © Gemot Heiser 2019 — CC Attribution License UNSW
@ =4 Present Verification Limitations @ .4 Common Criteria?
* Not verified boot code Lovel |Requi s |Specificati Desi ol ot
. Assume it leaves kernel in safe state evel |Requirements |Specification esign mplementation
EAL1 |not evaluated |Informal not eval not evaluated
. L EAL2 |not evaluated |Informal Informal not evaluated
. Caches/MMU\PresentIy modeled at high level / axiomised EAL3 |not evaluated | Informal informal ot evaluated
‘ MMU model just finished ‘ EAL4 |not evaluated |Informal Informal not evaluated
« Not proved any temporal properties EAL5 |not evaluated |Semi-Formal |Semi-Formal |Informal
o EAL6 |Formal Semi-Formal |Semi-Formal |Informal
. Presen_tly not proved scheduler observes priorities, EAL7 |Formal Formal Formal Informal
properties needed for RT
« WCET analysis applies only to dated ARM11/A8 cores @=:14| Formal Formal Formal Formal
* No proofs about timing channels
28 COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 - CC Attribution License @ UNSW 29 COMP9242 2019T2 W09a: Verification and seL4. © Gernot Heiser 2019 - CC Attribution License UNSW

Cost of Verification

30 COMP9242 2019T2 WO9a: Verification and seL4 © Gernot Heiser 2019 - CC Attribution License. @

Q

4 Verification Cost Breakdown

Haskell design 2 py

Abstract |
Spec
C implementation

2 months

Verification

2 months

Debugging/Testing E

Abstract spec refinement 8 py . <

Executable
8
CRN|

Executable spec refinement

31

Fastpath verification 5 months
Formal frameworks 9 py \E
I Total 24 py
' Reusable!) Non-reusable verification |11.5 py
Traditional engineering | 4-6 py mentation

COMP9242 201972 W09a: Verification and seL4 © Gernot Heiser 2019 - CC Attribution License @

@524 Why So Hard for 9,000 LOC?

- sel4 call)

graph
~a_ S 0O
32 COMP9242 2019T2 W09a: Verification and seL4 © Gemnot Heiser 2019 — CC Attribution License UNSW

33

4 Verification Cost

Confidentiality

Availability |

Integrity |

.~

‘\ﬂ‘ Abstract

Model

\T py, 4 months \

‘ 2 py, 1.5 years ‘

Mostly for tools [CImple- ‘M‘

mentation
“T3

e Design + implementation
2py, 1year | + verification = $400/LOC

. Mostly for tools

COMP9242 2019T2 W09a: Verification and seL4 © Gemnot Heiser 2019 — CC Attribution License

@524 Microkernel Life-Cycle Cost in Context
A

P ‘ ? ‘ ‘ sel4 ‘
_ Revolution! R $400 Green Hills
. T ® INTEGRITY
2 $1000
g
=3
7]
0
< S
L4 ’
Pistachio 1
$100-150
1 1 1 1 1
100 250 500 750 1000>
Cost ($/SLOC)
34 CCOMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 - CC Attribution License. @UNSW

