School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

UNSW

Australia’s
Global

SYDNEY University
Confidentiality Integrity Availability
2019 T2 Week 09a Abstract Model
Formal Verification and selL4 £
@GernotHeiser

i

Binary code

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 3.0 License

* You are free:
 to share—to copy, distribute and transmit the work
 to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW
al

2

Assurance and Verification

COMP9242 2019T2 WO09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

;ﬁg

¢

3

Refresher: Assurance and Formal Verification

« Assurance:
 systematic evaluation and testing
 essentially an intensive and onerous form of quality assurance

* Formal verification:
« mathematical proof

Assurance and formal verification
aim to establish correctness of
* mechanism design

. Certification: independent examination . Mechanism implementation

 confirming that the assurance or verification was done right

COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

L%f“‘ﬂ

4

Assurance: Substantiating Trust

e Informal (English)
* Specification or formal (maths)

« Unambiguous description of desired behaviour

» System design Compelling argument
- Justification that it meets specification EIRCREREE,

* Implementation

Code inspection
« Justification that it implements the design WIS PRI

rigorous testing,
proof

« Maintenance

« Justifies that system use meets assumptions

COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

Common Ciriteria

« Common Ciriteria for IT Security Evaluation [ISO/IEC 15408, 99]
 |SO standard, for general use
« Evaluates QA used to ensure systems meet their requirements
« Developed out of the famous US DOD “Orange Book”:
Trusted Computer System Evaluation Criteria [1985]
» Terminology:
 Target of evaluation (TOE): Evaluated system
« Security target (ST): Defines requirements
 Protection profile (PP): Standardised ST template

« Evaluation assurance level (EAL): Defines thoroughness of evaluation
* PPs have maximum EAL they can be used for

COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW
Canes)

vvvvvv
23

6

CC: Evaluation Assurance Levels

- Level |Requirements |Specification |[Design Implementation
§ EAL1 |not evaluated |Informal not eval not evaluated
g EAL2 |not evaluated |Informal Informal not evaluated
_qé EAL3 |not evaluated |Informal Informal not evaluated
%’ EAL4 |not evaluated |Informal Informal not evaluated
E EALS |[not evaluated |Semi-Formal |Semi-Formal |Informal
= EALG6 |Formal Semi-Formal |[Semi-Formal |[Informal

EAL7 |Formal Formal Formal Informal

COMP9242 2019T2 WO09a: Verification and selL4

© Gernot Heiser 2019 — CC Attribution License

ssssss

7

Common Criteria: Protection Profiles (PPs)

« Controlled Access PP (CAPP)
 standard OS security, up to EAL3

» Single Level Operating System PP
» superset of CAPP, up to EAL4+

« Labelled Security PP (LSPP)
« MAC for COTS OSes

» Multi-Level Operating System PP
 superset of CAPP, LSPP, up to EAL4+

« Separation Kernel Protection Profile (SKPP)
« strict partitioning, for EAL6-7

COMP9242 2019T2 WO09a: Verification and selL4

vvvvvv

© Gernot Heiser 2019 — CC Attribution License UNSW
Canes)

23

8

COTS OS Certifications

« EALS:
. 2010 Mac OS X (10.6)

« EAL4:
» 2003: Windows 2000 Get regularly
e 2005: SuSE Enterprise Linux hacked!

» 2006: Solaris 10 (EAL4+)
« against CAPP (an EAL3 PP!)

« 2007: Red Hat Linux (EAL4+)

- EALG:

« 2008: Green Hills INTEGRITY-178B (EAL6+)
« against SKPP, relatively simple PPC-based hardware platform in TOE

« EALY:
* 2019: Prove & Run PROVENCORE

COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

SKPP on Commodity Hardware

« SKPP: OS provides only separation

* One Box One Wire (OB1) Project
* Use INTEGRITY-178B to isolate VMs on commodity desktop hardware

» Leverage existing INTEGRITY certification
* by “porting” it to commodity platform

NSA subsequently dis-endorsed SKPP,

discontinued certifying 2EALS
Conclusion [NSA, March 2010]:

« SKPP validation for commodity hardware
platforms infeasible due to their complexity
« SKPP has limited relevance for these platforms

COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

) SYDNEY
J.':.@vﬂJ

Common Criteria Limitations

» Very expensive Effectively dead
* rule of thumb: EALG+ costs $1K/LOC in 5-Eyes defence
design-implementation-evaluation-certification
« Too much focus on development process
* rather than the product that was delivered

» Lower EALs of little practical use for OSes
« c.f. COTS OS EAL4 certifications

« Commercial Licensed Evaluation Facilities licenses rarely revoked
 Leads to potential “race to the bottom” [Anderson & Fuloria, 2009]

10 COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW
al

11

Formal Verification

* Prove properties about a mathematical model of a system

COMP9242 2019T2 WO09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

vvvvvv

Model Checking and Linux: A Sad Story

« Static analysis of Linux source [Chou & al, 2001]
« Found high density of bugs, especially in device drivers

« Re-analysis 10 years later [Palix & al, 2011] Disappointing rate of
improvement for bugs that

_ _ are automatically detectable!
Fault rate by directory [Palix’11]
‘ | | | |

------ Average
—a— Staging
—o— Dirivers
—e— Sound

Arch

FS

Net
—4— Other

o
P

;

% of faulty notes

0.0 il | - I
04 05 06 07 08 09 10

12 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW
2

vvvvvv
b

And the Result?

@ TeCHNICA o s o o 0 s e

RISK ASSESSMENT —

Unsafe at any clock speed:
Linux kernel security needs a
rethink

Ars reports from the Linux Security Summit—and finds much work
that needs to be done.

J.M. PORUP (UK) - 9/27/2016, 10:57 PM B I u e B 0 rn e

A The |l inniv karnal tndav faraec an iinnraradantad cafats rricic Miich lika whan

13 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

ssssss

Au g U St 2 O O 9 A NICTA bejelentette a vilg els8, formalis médszerekkel igazolt,

New Scientist
Saturday 29/8/2009
p| Stories Recent Popular Searc Page: 21

Section: General News

Region: National

Type: Magazines Science / Technology
Size: 196.31 sq.cms.

:’ostec;e by S:t:lsk'ltll :en Thursday Aug
s The ultimate way to keep your
"Operating systems usually hav¢ Computer Safe frOm harm

and so forth are known by almos
to prove that a particular OS ken
formally verified, and as such it «

Slashdot is powered by your subm

FLAWS in the code, or “kernel”, that just mathematics, and you can
sits at the heart of modern computers reason about them mathematically,”

leave them prone to occasional says Klein.
researchers used an executable malfunction and vulnerable to attack His team formulated a model with
the Isabelle theorem prover to ge by worms and viruses. So the more than 200,000 logical steps
matches the executable and the development of a secure general- which allowed them to prove that the

Does it run Linux? "We're pleased {0 cay « . roce :"‘“oggﬁn"f?m?;‘m 3‘ e praa vt st v:.) asits

(P OSSIErsS eregmenyekeppen pealg egy olyan megpiznatosagot Kapnak a szortvertdl, amely e
|

15 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

MIT
Technology

Review

A LISTS | INNOVATORSUNDER35 & DISRUPTIVECOMPANIES BREAKTHROUGH TECHNOLOGIES

|0 BREAKTHROUGH
TECHNOLOGIES

Crash-Proof Code

Making critical software safer

7 comments
WILLIAM BULKELEY

16 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

J SYDNEY
Cazs]

@24 Proving Security and Safety

Isolation properties

[ITP’11, S&P’13] Abstract
Model
Functional correctness
[SOSP’09]

Translation correctness C Imple-
[PLDI'13] mentation

Worst-case

execution time
[RTSS11, RTAS’16]

17 COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License (#% UNSW

vvvvvv

@324 Proving Functional Correctness

Abstract
Model
E 117,000 lop
Refinement: all possible

Executable implementation behaviours

Model are captured by the model

E 50,000 lop
C Imple-
mentation

18 COMP9242 2019T2 WO09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

[From Haskell F

@324 Proving Functional Correctness

constdefs
schedule :: "unit s _monad"
"schedule = do
threads <« allactiveTCBs;
thread <« select threads;
do_machine op flushCaches OR return ();
modify (As. s (| cur_thread := thread [))
Odll

schedule Kernel
schedule = do
action <- getScheduleraction
case action of

()

mally -> do
cad <- getCurThread
le <- isRunnable curThread
threadGet tcbhbTimeSlice curThread
ot runnable || time == 0) chooseThread

vold
setPriority(tch_t *tptr, prio_t prio) {
prio_t oldprio;

if(thread_state_get_tchbQueued{tptr->tchState)) {
oldprio = tptr->tcbPriority;
ksReadyQueues[oldprio] = tcbhSchedDequeue(tptr, ksReadyQueuesl[:
if(isRunnable(tptr)) £
ksReadyQueues[prio]l = tcbSchedEngqueue(tptr, ksReadyQueues

else {
thread_state_ptr_set_tchQueued{&tptr->tchState, false);

3

tptr->tchPriority = prio;

vold
yieldTo(tch_t *target) f{
target->tchbTimeSlice += ksCurThread->tchTimeSlice;

UNSW

SYDNEY

19 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

Functional Correctness Summary

Can prove
further properties
« Behaviour of C code is fully captured by abstract model on abstract level!

Kinds of properties proved

Behaviour of C code is fully captured by executable model

Kernel never fails, behaviour is always well-defined

_ _ Bugs found:
e assertions never fail + 16 in (shallow) testing
* will never de-reference null pointer « 460 in verification
* will never access array out of bounds « 160 in C,
e cannot be subverted by misformed input 130 in design,
« 150 in spec

All syscalls terminate, reclaiming memory is safe, ...

Well typed references, aligned objects, kernel always mapped...

Access control is decidable

20 COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

::quﬁ

@24 Binary Code Verification Target of functional

correctness proof

{ C source J — { Formalised C

Formal _
C semantics ! Rewrite J

rules

—{ Functional J

code
SAT solver j

Functional
code

De-compiler J

o [

bina
tables etc Yy

21 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

|solation Goes Deep

@%\@ ‘/33\0

Kernel data
partitioned
like user data

22 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

SO SYDNEY
G

23

Integrity: Control Write Access

Event-based kernel
always operates on be-
half of well-defined user:
* Prove kernel only
modifies data if
presented write cap

To prove:

Low has no write capabilities to High objects

= no action of Low will modify High state
Specifically, kernel does not modify on Low’s behalf!

< SYDNEY

COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW
2

Availability: Ensuring Resource Access

@%\b ‘/33\0

Nothing to do, implied
by other properties!

Strict separation of kernel resources
= Low cannot deny High access to resources

24 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW
2

vvvvvv
b

Confidentiality: Control Information Flow

T

9

/& Violation not

w
observable
o0 .

Non-interference proof:
« Evolution of Low does not depend on High state
« Also shows absence of covert storage channels

To prove:
Low has no read capabilities to High objects
= no action will reveal High state to Low

25 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW
2

< SYDNEY

Confidentiality Proof Challenge

Spec Implementation
bool a(); Idiotic but valid refinement bool aQ) {
return !secret;
}

bool b() { ..

. Non-determinism

int secret; . .
} breaks confidentiality

under refinement!
Solution:

« Remove non-determinism v%hgre
it affects confidentiality O
« Eg: scheduler strictly round-robin

Infoflow is very strong
property, requiring
restrictions rarely met ™

in real world

26 COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

::quﬁ

Verification Assumptions

1. Hardware behaves as expected
* Formalised hardware-software contract (ISA)
« Hardware implementation free of bugs, Trojans, ...

2. Spec matches expectations

» Can only prove “security” if specify what “security” means
« Spec may not be what we think it is

3. Proof checker is correct
* Isabel/HOL checking core that validates proofs against logic

With binary verification do
not need to trust C compiler!

< SYDNEY
G

27 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

Present Verification Limitations

* Not verified boot code
« Assume it leaves kernel in safe state

« Caches/MMU presently modeled at high level / axiomised

MMU model just finished

* Not proved any temporal properties

* Presently not proved scheduler observes priorities,
properties needed for RT
« WCET analysis applies only to dated ARM11/A8 cores

* No proofs about timing channels

28 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

|/ SYDNEY
b

Common Criteria?

Level [Requirements |Specification |Design Implementation
EAL1 |not evaluated |Informal not eval not evaluated
EAL2 |not evaluated |Informal Informal not evaluated
EAL3 |not evaluated |Informal Informal not evaluated
EAL4 |not evaluated |Informal Informal not evaluated

EAL5 |not evaluated |Semi-Formal |Semi-Formal [Informal

EAL6 [Formal Semi-Formal |Semi-Formal |Informal
EAL7 [Formal Formal Formal Informal
Formal Formal Formal Formal

29 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

vvvvvv

a2

30

Cost of Verification

COMP9242 2019T2 WO09a: Verification and selL4

© Gernot Heiser 2019 — CC Attribution License

;ﬁg

¢

@214 Verification Cost Breakdown

Abstract
Haskell design 2 py Spec

C implementation 2 months

Verification Debugging/Testing
Abstract spec refinement 8 py

2 months

Executable spec refinement | 3 py

Executable
Spec

Non-reusable verification C Imple-
Traditional engineering | 4-6 py mentation

31 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License

Fastpath verification 5 months
9 py

Formal frameworks
Total

Reusable!

f: UNSW

vvvvvv

Why So Hard for 9,000 LOC?

selL4 call
graph

32 COMP9242 2019T2 W09a: Verification and selL4 © Gernot Heiser 2019 — CC Attribution License UNSW

SO sYDNEY
LWJ

@24 Verification Cost

S

o
o

|

o
Abstract
Model

o
o

|

o
C Imple-
mentation

33 COMP9242 2019T2 WO09a: Verification and selL4

Q‘°°\

Availability

© Gernot Heiser 2019 — CC Attribution License

IIIIII

Microkernel Life-Cycle Cost in Context

? selL4
Revolution! $400
Q
(&)
=
% Fast!
gt’ Slow!
L4
Pistachio
$100-150

500 1000

Cost ($/SLOC)

34 COMP9242 2019T2 W09a: Verification and seL4 © Gernot Heiser 2019 — CC Attribution License UNSW

b

100 250 750

