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Copyright Notice
These slides are distributed under the 
Creative Commons Attribution 3.0 License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) as 
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at 
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2019T2 W09a: Verification and seL4



© Gernot Heiser 2019 – CC Attribution License 

Assurance and Verification
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Refresher: Assurance and Formal Verification
• Assurance:

• systematic evaluation and testing
• essentially an intensive and onerous form of quality assurance

• Formal verification:
• mathematical proof

• Certification: independent examination 
• confirming that the assurance or verification was done right
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Assurance and formal verification 
aim to establish correctness of
• mechanism design
• mechanism implementation
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Assurance: Substantiating Trust
• Specification

• Unambiguous description of desired behaviour

• System design
• Justification that it meets specification

• Implementation
• Justification that it implements the design

• Maintenance
• Justifies that system use meets assumptions
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Informal (English) 
or formal (maths)

Compelling argument 
or formal proof

Code inspection, 
rigorous testing, 

proof
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Common Criteria
• Common Criteria for IT Security Evaluation [ISO/IEC 15408, 99]

• ISO standard, for general use
• Evaluates QA used to ensure systems meet their requirements
• Developed out of the famous US DOD “Orange Book”:

Trusted Computer System Evaluation Criteria [1985]
• Terminology:

• Target of evaluation (TOE): Evaluated system
• Security target (ST): Defines requirements
• Protection profile (PP): Standardised ST template
• Evaluation assurance level (EAL): Defines thoroughness of evaluation

• PPs have maximum EAL they can be used for
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CC: Evaluation Assurance Levels
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Level Requirements Specification Design Implementation

EAL1 not evaluated Informal not eval not evaluated

EAL2 not evaluated Informal Informal not evaluated

EAL3 not evaluated Informal Informal not evaluated

EAL4 not evaluated Informal Informal not evaluated

EAL5 not evaluated Semi-Formal Semi-Formal Informal
EAL6 Formal Semi-Formal Semi-Formal Informal
EAL7 Formal Formal Formal Informal
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Common Criteria: Protection Profiles (PPs)
• Controlled Access PP (CAPP)

• standard OS security, up to EAL3
• Single Level Operating System PP

• superset of CAPP, up to EAL4+
• Labelled Security PP (LSPP)

• MAC for COTS OSes
• Multi-Level Operating System PP

• superset of CAPP, LSPP, up to EAL4+
• Separation Kernel Protection Profile (SKPP)

• strict partitioning, for EAL6-7
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COTS OS Certifications
• EAL3: 

• 2010 Mac OS X (10.6)
• EAL4: 

• 2003: Windows 2000
• 2005: SuSE Enterprise Linux
• 2006: Solaris 10 (EAL4+)

• against CAPP (an EAL3 PP!)
• 2007: Red Hat Linux (EAL4+)

• EAL6:
• 2008: Green Hills INTEGRITY-178B (EAL6+)

• against SKPP, relatively simple PPC-based hardware platform in TOE
• EAL7:

• 2019: Prove & Run PROVENCORE
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Get regularly 
hacked!
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SKPP on Commodity Hardware
• SKPP: OS provides only separation
• One Box One Wire (OB1) Project

• Use INTEGRITY-178B to isolate VMs on commodity desktop hardware
• Leverage existing INTEGRITY certification

• by “porting” it to commodity platform
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Conclusion [NSA, March 2010]:
• SKPP validation for commodity hardware 

platforms infeasible due to their complexity
• SKPP has limited relevance for these platforms

NSA subsequently dis-endorsed SKPP, 
discontinued certifying ≥EAL5
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Common Criteria Limitations
• Very expensive

• rule of thumb: EAL6+ costs $1K/LOC
design-implementation-evaluation-certification

• Too much focus on development process
• rather than the product that was delivered

• Lower EALs of little practical use for OSes
• c.f. COTS OS EAL4 certifications

• Commercial Licensed Evaluation Facilities licenses rarely revoked
• Leads to potential “race to the bottom” [Anderson & Fuloria, 2009]
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Effectively dead 
in 5-Eyes defence
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Formal Verification
• Prove properties about a mathematical model of a system

11 COMP9242 2019T2 W09a: Verification and seL4

Model checking / abstract interpretation:
• Cannot generally prove code correct

• Proves specific properties
• Has false positives or 

false negatives (unsoundness) 
• Suffers state-space explosion
• May scale to large code bases

Recent work automatically 
proved functional correctness of 

simple systems using SMT 
solvers [Hyperkernel, SOSP’17]

Theorem proving:
• Can deal with large (even 

infinite) state spaces
• Can prove functional 

correctness against a spec
• Very labour-intensive
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Model Checking and Linux: A Sad Story
• Static analysis of Linux source [Chou & al, 2001]

• Found high density of bugs, especially in device drivers
• Re-analysis 10 years later [Palix & al, 2011]
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Faults in Linux: Ten Years Later 11

2004 2005 2006 2007 2008 2009 2010
0.0

0.5

1.0

1.5

%
 o

f f
au

lty
 n

ot
es

Average
Block
Null
Var
IsNull
NullRef
Range
Lock
Intr
LockIntr
Free
Size

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

Figure 7: Fault rate per fault kind
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Figure 8: Faults per directory

was a substantial increase in the number of Comedi
drivers8 in drivers/staging. All of the 21 Float
faults introduced in this version were in two Comedi
files. These faults are still present in Linux 2.6.33. Re-
call, however, that staging drivers are not included in
Linux distributions.

As shown in Figure 7, the fault rate, i.e., the ratio
of observed faults to the number of notes,9 for the con-
sidered fault kinds confirms the increase in reliability.
As the number of notes increases roughly with the size
of the Linux kernel while the number of faults is rela-
tively stable, the fault rate tends to decline. The main in-
creases, in Lock and Null, are due to the introduction of
mutex lock and btrfs, respectively, as mentioned
previously.

5.2 Where are the Faults?
The presence of a high rate of faults in a certain kind of
code may signal a lack of code quality, indicating that
this kind of code needs more attention. Indeed, Chou
et al.’s work motivated studies of many kinds of driver
faults, going beyond the fault kinds they considered.
Nevertheless, many properties of the Linux kernel have
changed since 2001, and so we reinvestigate what kind of

8http://www.comedi.org/
9Recall (Section 2.2) that we do not calculate notes for Float, and thus Float

is omitted from the rate graphs.
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Figure 9: Fault rate per directory

code has the highest rate of faults, to determine whether
attention should now be placed elsewhere.

As shown in Figure 8, the largest number of faults is
still in drivers, which indeed makes up around 57%
of the Linux kernel source code. The second-largest
number of faults is in arch, accompanied by fs and
drivers/staging in recent versions. In contrast
to the case of Linux 2.4.1, however, as shown in Fig-
ure 9, drivers no longer has the largest fault rate,
and indeed since Linux 2.6.19 its fault rate has been
slightly below the average. There was not a large in-
crease in the number of drivers notes at that time,
so this decrease is indicative of the amount of attention
drivers receive in the peer reviewing process. Arch
on the other hand has many faults and relatively little
code, and so it has the highest fault rate throughout
most of Linux 2.6. Around 30% of the arch faults are
Null faults, although there appears to be no pattern to
their introduction. Drivers/staging, introduced
in Linux 2.6.28, also has a high fault rate, exceeding
that of arch. This directory is thus receiving drivers
that are not yet mature, as intended. The introduction
of drivers/staging, however, has no impact on
the fault rate of drivers, as drivers/staging
accommodates drivers that would not otherwise be ac-
cepted into the Linux kernel source tree. Such drivers
then benefit from the expertise of the Linux maintainers,
and are updated according to API changes with the rest
of the kernel.

For Linux 2.4.1, we observed that drivers had a much
higher fault rate for certain types of faults than other
directories. Figure 10 shows that drivers has a high
rate of Intr faults in Linux 2.6.33 as compared to other
directories, but there are very few such faults in this
version. Sound, which was part of drivers in 2.4.1,
has a very high rate of Range faults, as compared to the
other directories, but again the actual number of faults
is relatively small. Overall, while drivers has a high
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Disappointing rate of 
improvement for bugs that 

are automatically detectable!
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And the Result?
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August 2009
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Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confidentiality Availability

Binary 
code
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Functional correctness
[SOSP’09]

Isolation properties
[ITP’11, S&P’13]

Translation correctness
[PLDI’13]

Exclusions (at present):
• Kernel initialisation not yet verified
• MMU & caches modelled abstractly
• Multicore not yet verified
• Covert timing channels not precluded

Worst-case 
execution time

[RTSS’11, RTAS’16]

Proving Security and Safety
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World’s fastest 
microkernel!
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Proving Functional Correctness
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Abstract
Model

Executable
Model

C Imple-
mentation
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117,000 lop

50,000 lop

Refinement: all possible 
implementation behaviours 
are captured by the model

Refinement: all possible 
implementation behaviours 
are captured by the model
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From Haskell
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From Haskell

Refinement: all possible 
implementation behaviours 
are captured by the model

Refinement: all possible 
implementation behaviours 
are captured by the model

117,000 lop

50,000 lop

Proving Functional Correctness
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Functional Correctness Summary
Kinds of properties proved
• Behaviour of C code is fully captured by abstract model
• Behaviour of C code is fully captured by executable model
• Kernel never fails, behaviour is always well-defined
• assertions never fail
• will never de-reference null pointer
• will never access array out of bounds
• cannot be subverted by misformed input

• All syscalls terminate, reclaiming memory is safe, ...
• Well typed references, aligned objects, kernel always mapped…
• Access control is decidable
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Can prove 
further properties 
on abstract level!

Bugs found:
• 16 in (shallow) testing
• 460 in verification

• 160 in C, 
• 150 in design, 
• 150 in spec

20
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C source

Binary 
code

Formalised C

Formalised
binary

Functional
code

Functional
code

Formal ISA spec

SAT solver

Formal
C semantics Rewrite

rules

De-compiler

Symbol
tables etc

Binary Code Verification
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Target of functional 
correctness proof
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Isolation Goes Deep
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Kernel data 
partitioned 

like user data

22

High Low

TCBs Caps

PTs
TCBs Caps

PTs
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Integrity: Control Write Access
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High Low

TCBs Caps

PTs
TCBs Caps

PTs

23

To prove:
Low has no write capabilities to High objects
⇒ no action of Low will modify High state
Specifically, kernel does not modify on Low’s behalf!

Event-based kernel 
always operates on be-
half of well-defined user:
• Prove kernel only 

modifies data if 
presented write cap
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Availability: Ensuring Resource Access
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High Low

TCBs Caps

PTs
TCBs Caps

PTs
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Strict separation of kernel resources
⇒ Low cannot deny High access to resources

Nothing to do, implied 
by other properties!
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Confidentiality: Control Information Flow
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High Low

TCBs Caps

PTs
TCBs Caps

PTs
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Violation not 
observable 

by High!

To prove:
Low has no read capabilities to High objects
⇒ no action will reveal High state to Low

Non-interference proof:
• Evolution of Low does not depend on High state
• Also shows absence of covert storage channels
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Confidentiality Proof Challenge

Idiotic but valid refinement

Non-determinism 
breaks confidentiality 

under refinement!

Solution:
• Remove non-determinism where 

it affects confidentiality
• Eg: scheduler strictly round-robin

Spec
bool a();

bool b() {
int secret;

}

Implementation
bool a() {

return !secret;
}

Infoflow is very strong 
property, requiring 

restrictions rarely met 
in real world
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1. Hardware behaves as expected
• Formalised hardware-software contract (ISA)
• Hardware implementation free of bugs, Trojans, …

2. Spec matches expectations
• Can only prove “security” if specify what “security” means
• Spec may not be what we think it is

3. Proof checker is correct
• Isabel/HOL checking core that validates proofs against logic
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Verification Assumptions

With binary verification do 
not need to trust C compiler!

Abstract Model

Integrity

Proof

C Implementation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f
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• Not verified boot code
• Assume it leaves kernel in safe state

• Caches/MMU presently modeled at high level / axiomised

• Not proved any temporal properties

• Presently not proved scheduler observes priorities,
properties needed for RT

• WCET analysis applies only to dated ARM11/A8 cores
• No proofs about timing channels
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Present Verification Limitations
Abstract Model

Integrity

Proof

C Implementation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

28

MMU model just finished
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Common Criteria?
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Level Requirements Specification Design Implementation

EAL1 not evaluated Informal not eval not evaluated

EAL2 not evaluated Informal Informal not evaluated

EAL3 not evaluated Informal Informal not evaluated

EAL4 not evaluated Informal Informal not evaluated

EAL5 not evaluated Semi-Formal Semi-Formal Informal
EAL6 Formal Semi-Formal Semi-Formal Informal
EAL7 Formal Formal Formal Informal

Level Requirements Specification Design Implementation

EAL1 not evaluated Informal not eval not evaluated

EAL2 not evaluated Informal Informal not evaluated

EAL3 not evaluated Informal Informal not evaluated

EAL4 not evaluated Informal Informal not evaluated

EAL5 not evaluated Semi-Formal Semi-Formal Informal
EAL6 Formal Semi-Formal Semi-Formal Informal
EAL7 Formal Formal Formal Informal

Formal Formal Formal Formal
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Cost of Verification
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Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py
Non-reusable verification 11.5 py
Traditional engineering 4–6 py

Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py
Non-reusable verification 11.5 py

Verification Cost Breakdown
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Reusable!

Abstract
Spec

Executable
Spec

C Imple-
mentation

Pr
oo

f
Pr

oo
f
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Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py

Verification
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Why So Hard for 9,000 LOC?
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seL4 call 
graph

32
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Verification Cost
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Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confidentiality Availability

Binary 
code
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oo
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11 py, 4.5 years

1 py, 4 months

0 py, by construction
4.5 py

2 py, 1.5 years
Mostly for tools

2 py, 1 year
Mostly for tools

Design + implementation 
+ verification = $400/LOC
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Microkernel Life-Cycle Cost in Context
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Slow!
Fast!Fast!

?
Revolution!
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