
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2019 T2 Week 09a
Formal Verification and seL4
@GernotHeiser

© Gernot Heiser 2019 – CC Attribution License

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 3.0 License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2019T2 W09a: Verification and seL4

© Gernot Heiser 2019 – CC Attribution License

Assurance and Verification

2 COMP9242 2019T2 W09a: Verification and seL4

© Gernot Heiser 2019 – CC Attribution License

Refresher: Assurance and Formal Verification
• Assurance:

• systematic evaluation and testing
• essentially an intensive and onerous form of quality assurance

• Formal verification:
• mathematical proof

• Certification: independent examination
• confirming that the assurance or verification was done right

3 COMP9242 2019T2 W09a: Verification and seL4

Assurance and formal verification
aim to establish correctness of
• mechanism design
• mechanism implementation

© Gernot Heiser 2019 – CC Attribution License

Assurance: Substantiating Trust
• Specification

• Unambiguous description of desired behaviour

• System design
• Justification that it meets specification

• Implementation
• Justification that it implements the design

• Maintenance
• Justifies that system use meets assumptions

4 COMP9242 2019T2 W09a: Verification and seL4

Informal (English)
or formal (maths)

Compelling argument
or formal proof

Code inspection,
rigorous testing,

proof

© Gernot Heiser 2019 – CC Attribution License

Common Criteria
• Common Criteria for IT Security Evaluation [ISO/IEC 15408, 99]

• ISO standard, for general use
• Evaluates QA used to ensure systems meet their requirements
• Developed out of the famous US DOD “Orange Book”:

Trusted Computer System Evaluation Criteria [1985]
• Terminology:

• Target of evaluation (TOE): Evaluated system
• Security target (ST): Defines requirements
• Protection profile (PP): Standardised ST template
• Evaluation assurance level (EAL): Defines thoroughness of evaluation

• PPs have maximum EAL they can be used for

5 COMP9242 2019T2 W09a: Verification and seL4

© Gernot Heiser 2019 – CC Attribution License

CC: Evaluation Assurance Levels

6 COMP9242 2019T2 W09a: Verification and seL4

Level Requirements Specification Design Implementation

EAL1 not evaluated Informal not eval not evaluated

EAL2 not evaluated Informal Informal not evaluated

EAL3 not evaluated Informal Informal not evaluated

EAL4 not evaluated Informal Informal not evaluated

EAL5 not evaluated Semi-Formal Semi-Formal Informal
EAL6 Formal Semi-Formal Semi-Formal Informal
EAL7 Formal Formal Formal Informal

Th
or

ou
gh

ne
ss

, c
os

t

© Gernot Heiser 2019 – CC Attribution License

Common Criteria: Protection Profiles (PPs)
• Controlled Access PP (CAPP)

• standard OS security, up to EAL3
• Single Level Operating System PP

• superset of CAPP, up to EAL4+
• Labelled Security PP (LSPP)

• MAC for COTS OSes
• Multi-Level Operating System PP

• superset of CAPP, LSPP, up to EAL4+
• Separation Kernel Protection Profile (SKPP)

• strict partitioning, for EAL6-7

7 COMP9242 2019T2 W09a: Verification and seL4

© Gernot Heiser 2019 – CC Attribution License

COTS OS Certifications
• EAL3:

• 2010 Mac OS X (10.6)
• EAL4:

• 2003: Windows 2000
• 2005: SuSE Enterprise Linux
• 2006: Solaris 10 (EAL4+)

• against CAPP (an EAL3 PP!)
• 2007: Red Hat Linux (EAL4+)

• EAL6:
• 2008: Green Hills INTEGRITY-178B (EAL6+)

• against SKPP, relatively simple PPC-based hardware platform in TOE
• EAL7:

• 2019: Prove & Run PROVENCORE

8 COMP9242 2019T2 W09a: Verification and seL4

Get regularly
hacked!

© Gernot Heiser 2019 – CC Attribution License

SKPP on Commodity Hardware
• SKPP: OS provides only separation
• One Box One Wire (OB1) Project

• Use INTEGRITY-178B to isolate VMs on commodity desktop hardware
• Leverage existing INTEGRITY certification

• by “porting” it to commodity platform

9 COMP9242 2019T2 W09a: Verification and seL4

Conclusion [NSA, March 2010]:
• SKPP validation for commodity hardware

platforms infeasible due to their complexity
• SKPP has limited relevance for these platforms

NSA subsequently dis-endorsed SKPP,
discontinued certifying ≥EAL5

© Gernot Heiser 2019 – CC Attribution License

Common Criteria Limitations
• Very expensive

• rule of thumb: EAL6+ costs $1K/LOC
design-implementation-evaluation-certification

• Too much focus on development process
• rather than the product that was delivered

• Lower EALs of little practical use for OSes
• c.f. COTS OS EAL4 certifications

• Commercial Licensed Evaluation Facilities licenses rarely revoked
• Leads to potential “race to the bottom” [Anderson & Fuloria, 2009]

10 COMP9242 2019T2 W09a: Verification and seL4

Effectively dead
in 5-Eyes defence

© Gernot Heiser 2019 – CC Attribution License

Formal Verification
• Prove properties about a mathematical model of a system

11 COMP9242 2019T2 W09a: Verification and seL4

Model checking / abstract interpretation:
• Cannot generally prove code correct

• Proves specific properties
• Has false positives or

false negatives (unsoundness)
• Suffers state-space explosion
• May scale to large code bases

Recent work automatically
proved functional correctness of

simple systems using SMT
solvers [Hyperkernel, SOSP’17]

Theorem proving:
• Can deal with large (even

infinite) state spaces
• Can prove functional

correctness against a spec
• Very labour-intensive

© Gernot Heiser 2019 – CC Attribution License

Model Checking and Linux: A Sad Story
• Static analysis of Linux source [Chou & al, 2001]

• Found high density of bugs, especially in device drivers
• Re-analysis 10 years later [Palix & al, 2011]

12 COMP9242 2019T2 W09a: Verification and seL4

04 05 06 07 08 09 10

Faults in Linux: Ten Years Later 11

2004 2005 2006 2007 2008 2009 2010
0.0

0.5

1.0

1.5

%
 o

f f
au

lty
 n

ot
es

Average
Block
Null
Var
IsNull
NullRef
Range
Lock
Intr
LockIntr
Free
Size

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

Figure 7: Fault rate per fault kind

2004 2005 2006 2007 2008 2009 2010
0

100

200

300

400

of

 fa
ul

ts

Staging
Drivers
Sound
Arch
FS
Net
Other

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

Figure 8: Faults per directory

was a substantial increase in the number of Comedi
drivers8 in drivers/staging. All of the 21 Float
faults introduced in this version were in two Comedi
files. These faults are still present in Linux 2.6.33. Re-
call, however, that staging drivers are not included in
Linux distributions.

As shown in Figure 7, the fault rate, i.e., the ratio
of observed faults to the number of notes,9 for the con-
sidered fault kinds confirms the increase in reliability.
As the number of notes increases roughly with the size
of the Linux kernel while the number of faults is rela-
tively stable, the fault rate tends to decline. The main in-
creases, in Lock and Null, are due to the introduction of
mutex lock and btrfs, respectively, as mentioned
previously.

5.2 Where are the Faults?
The presence of a high rate of faults in a certain kind of
code may signal a lack of code quality, indicating that
this kind of code needs more attention. Indeed, Chou
et al.’s work motivated studies of many kinds of driver
faults, going beyond the fault kinds they considered.
Nevertheless, many properties of the Linux kernel have
changed since 2001, and so we reinvestigate what kind of

8http://www.comedi.org/
9Recall (Section 2.2) that we do not calculate notes for Float, and thus Float

is omitted from the rate graphs.

2004 2005 2006 2007 2008 2009 2010
0.0

0.2

0.4

0.6

0.8

%
 o

f f
au

lty
 n

ot
es

Average
Staging
Drivers
Sound
Arch
FS
Net
Other

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

Figure 9: Fault rate per directory

code has the highest rate of faults, to determine whether
attention should now be placed elsewhere.

As shown in Figure 8, the largest number of faults is
still in drivers, which indeed makes up around 57%
of the Linux kernel source code. The second-largest
number of faults is in arch, accompanied by fs and
drivers/staging in recent versions. In contrast
to the case of Linux 2.4.1, however, as shown in Fig-
ure 9, drivers no longer has the largest fault rate,
and indeed since Linux 2.6.19 its fault rate has been
slightly below the average. There was not a large in-
crease in the number of drivers notes at that time,
so this decrease is indicative of the amount of attention
drivers receive in the peer reviewing process. Arch
on the other hand has many faults and relatively little
code, and so it has the highest fault rate throughout
most of Linux 2.6. Around 30% of the arch faults are
Null faults, although there appears to be no pattern to
their introduction. Drivers/staging, introduced
in Linux 2.6.28, also has a high fault rate, exceeding
that of arch. This directory is thus receiving drivers
that are not yet mature, as intended. The introduction
of drivers/staging, however, has no impact on
the fault rate of drivers, as drivers/staging
accommodates drivers that would not otherwise be ac-
cepted into the Linux kernel source tree. Such drivers
then benefit from the expertise of the Linux maintainers,
and are updated according to API changes with the rest
of the kernel.

For Linux 2.4.1, we observed that drivers had a much
higher fault rate for certain types of faults than other
directories. Figure 10 shows that drivers has a high
rate of Intr faults in Linux 2.6.33 as compared to other
directories, but there are very few such faults in this
version. Sound, which was part of drivers in 2.4.1,
has a very high rate of Range faults, as compared to the
other directories, but again the actual number of faults
is relatively small. Overall, while drivers has a high

RR n° 7357

in
ria

-0
05

09
25

6,
 v

er
si

on
 1

 -
11

 A
ug

 2
01

0

0.0

0.2

0.4

0.6

0.8

%
 o

f f
au

lty
 n

ot
es

Average
Staging
Drivers
Sound
Arch
FS
Net
Other

Fault rate by directory [Palix’11]

Disappointing rate of
improvement for bugs that

are automatically detectable!

© Gernot Heiser 2019 – CC Attribution License

And the Result?

13 COMP9242 2019T2 W09a: Verification and seL4

© Gernot Heiser 2019 – CC Attribution License 14 COMP9242 2019T2 W09a: Verification and seL4

© Gernot Heiser 2019 – CC Attribution License

August 2009

COMP9242 2019T2 W09a: Verification and seL415

© Gernot Heiser 2019 – CC Attribution License 16 COMP9242 2019T2 W09a: Verification and seL4

© Gernot Heiser 2019 – CC Attribution License

Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confidentiality Availability

Binary
code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional correctness
[SOSP’09]

Isolation properties
[ITP’11, S&P’13]

Translation correctness
[PLDI’13]

Exclusions (at present):
• Kernel initialisation not yet verified
• MMU & caches modelled abstractly
• Multicore not yet verified
• Covert timing channels not precluded

Worst-case
execution time

[RTSS’11, RTAS’16]

Proving Security and Safety

COMP9242 2019T2 W09a: Verification and seL417

World’s fastest
microkernel!

© Gernot Heiser 2019 – CC Attribution License

Proving Functional Correctness

COMP9242 2019T2 W09a: Verification and seL4

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f

117,000 lop

50,000 lop

Refinement: all possible
implementation behaviours
are captured by the model

Refinement: all possible
implementation behaviours
are captured by the model

18

From Haskell

© Gernot Heiser 2019 – CC Attribution License

From Haskell

Refinement: all possible
implementation behaviours
are captured by the model

Refinement: all possible
implementation behaviours
are captured by the model

117,000 lop

50,000 lop

Proving Functional Correctness

COMP9242 2019T2 W09a: Verification and seL4

Abstract
Model

Executable
Model

C Imple-
mentation

Pr
oo

f
Pr

oo
f

19

© Gernot Heiser 2019 – CC Attribution License

Functional Correctness Summary
Kinds of properties proved
• Behaviour of C code is fully captured by abstract model
• Behaviour of C code is fully captured by executable model
• Kernel never fails, behaviour is always well-defined
• assertions never fail
• will never de-reference null pointer
• will never access array out of bounds
• cannot be subverted by misformed input

• All syscalls terminate, reclaiming memory is safe, ...
• Well typed references, aligned objects, kernel always mapped…
• Access control is decidable

COMP9242 2019T2 W09a: Verification and seL4

Can prove
further properties
on abstract level!

Bugs found:
• 16 in (shallow) testing
• 460 in verification

• 160 in C,
• 150 in design,
• 150 in spec

20

© Gernot Heiser 2019 – CC Attribution License

C source

Binary
code

Formalised C

Formalised
binary

Functional
code

Functional
code

Formal ISA spec

SAT solver

Formal
C semantics Rewrite

rules

De-compiler

Symbol
tables etc

Binary Code Verification

COMP9242 2019T2 W09a: Verification and seL421

Target of functional
correctness proof

© Gernot Heiser 2019 – CC Attribution License

Isolation Goes Deep

COMP9242 2019T2 W09a: Verification and seL4

Kernel data
partitioned

like user data

22

High Low

TCBs Caps

PTs
TCBs Caps

PTs

© Gernot Heiser 2019 – CC Attribution License

Integrity: Control Write Access

COMP9242 2019T2 W09a: Verification and seL4

High Low

TCBs Caps

PTs
TCBs Caps

PTs

23

To prove:
Low has no write capabilities to High objects
⇒ no action of Low will modify High state
Specifically, kernel does not modify on Low’s behalf!

Event-based kernel
always operates on be-
half of well-defined user:
• Prove kernel only

modifies data if
presented write cap

© Gernot Heiser 2019 – CC Attribution License

Availability: Ensuring Resource Access

COMP9242 2019T2 W09a: Verification and seL4

High Low

TCBs Caps

PTs
TCBs Caps

PTs

24

Strict separation of kernel resources
⇒ Low cannot deny High access to resources

Nothing to do, implied
by other properties!

© Gernot Heiser 2019 – CC Attribution License

Confidentiality: Control Information Flow

COMP9242 2019T2 W09a: Verification and seL4

High Low

TCBs Caps

PTs
TCBs Caps

PTs

25

Violation not
observable

by High!

To prove:
Low has no read capabilities to High objects
⇒ no action will reveal High state to Low

Non-interference proof:
• Evolution of Low does not depend on High state
• Also shows absence of covert storage channels

© Gernot Heiser 2019 – CC Attribution License

Confidentiality Proof Challenge

Idiotic but valid refinement

Non-determinism
breaks confidentiality

under refinement!

Solution:
• Remove non-determinism where

it affects confidentiality
• Eg: scheduler strictly round-robin

Spec
bool a();

bool b() {
int secret;

}

Implementation
bool a() {

return !secret;
}

Infoflow is very strong
property, requiring

restrictions rarely met
in real world

COMP9242 2019T2 W09a: Verification and seL426

© Gernot Heiser 2019 – CC Attribution License

1. Hardware behaves as expected
• Formalised hardware-software contract (ISA)
• Hardware implementation free of bugs, Trojans, …

2. Spec matches expectations
• Can only prove “security” if specify what “security” means
• Spec may not be what we think it is

3. Proof checker is correct
• Isabel/HOL checking core that validates proofs against logic

COMP9242 2019T2 W09a: Verification and seL4

Verification Assumptions

With binary verification do
not need to trust C compiler!

Abstract Model

Integrity

Proof

C Implementation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

27

© Gernot Heiser 2019 – CC Attribution License

• Not verified boot code
• Assume it leaves kernel in safe state

• Caches/MMU presently modeled at high level / axiomised

• Not proved any temporal properties

• Presently not proved scheduler observes priorities,
properties needed for RT

• WCET analysis applies only to dated ARM11/A8 cores
• No proofs about timing channels

COMP9242 2019T2 W09a: Verification and seL4

Present Verification Limitations
Abstract Model

Integrity

Proof

C Implementation

Proof

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

28

MMU model just finished

© Gernot Heiser 2019 – CC Attribution License 29

Common Criteria?

COMP9242 2019T2 W09a: Verification and seL4

Level Requirements Specification Design Implementation

EAL1 not evaluated Informal not eval not evaluated

EAL2 not evaluated Informal Informal not evaluated

EAL3 not evaluated Informal Informal not evaluated

EAL4 not evaluated Informal Informal not evaluated

EAL5 not evaluated Semi-Formal Semi-Formal Informal
EAL6 Formal Semi-Formal Semi-Formal Informal
EAL7 Formal Formal Formal Informal

Level Requirements Specification Design Implementation

EAL1 not evaluated Informal not eval not evaluated

EAL2 not evaluated Informal Informal not evaluated

EAL3 not evaluated Informal Informal not evaluated

EAL4 not evaluated Informal Informal not evaluated

EAL5 not evaluated Semi-Formal Semi-Formal Informal
EAL6 Formal Semi-Formal Semi-Formal Informal
EAL7 Formal Formal Formal Informal

Formal Formal Formal Formal

© Gernot Heiser 2019 – CC Attribution License

Cost of Verification

30 COMP9242 2019T2 W09a: Verification and seL4

© Gernot Heiser 2019 – CC Attribution License

Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py
Non-reusable verification 11.5 py
Traditional engineering 4–6 py

Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py
Non-reusable verification 11.5 py

Verification Cost Breakdown

COMP9242 2019T2 W09a: Verification and seL4

Reusable!

Abstract
Spec

Executable
Spec

C Imple-
mentation

Pr
oo

f
Pr

oo
f

31

Haskell design 2 py
C implementation 2 months
Debugging/Testing 2 months
Abstract spec refinement 8 py
Executable spec refinement 3 py
Fastpath verification 5 months
Formal frameworks 9 py
Total 24 py

Verification

© Gernot Heiser 2019 – CC Attribution License

Why So Hard for 9,000 LOC?

COMP9242 2019T2 W09a: Verification and seL4

seL4 call
graph

32

© Gernot Heiser 2019 – CC Attribution License 33

Verification Cost

COMP9242 2019T2 W09a: Verification and seL4

Integrity

Proof

Abstract
Model

C Imple-
mentation

Proof

Confidentiality Availability

Binary
code

Pr
oo

f
Pr

oo
f

Pr
oo

f
11 py, 4.5 years

1 py, 4 months

0 py, by construction
4.5 py

2 py, 1.5 years
Mostly for tools

2 py, 1 year
Mostly for tools

Design + implementation
+ verification = $400/LOC

© Gernot Heiser 2019 – CC Attribution License

Microkernel Life-Cycle Cost in Context

COMP9242 2019T2 W09a: Verification and seL4

L4
Pistachio
$100–150

seL4
$400 Green Hills

INTEGRITY
$1000

A
ss

ur
an

ce

Cost ($/SLOC)
1000750500250100

Slow!
Fast!Fast!

?
Revolution!

34

