W ‘ A

G
SyoRey || Unwersty

SMP, Multicore, Memory Ordering & Locking

These slides are made distributed under the Creative Commons Attribution 3.0 License, unless
otherwise noted on individual slides.

You are free:
to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work (but not in any way that suggests that the author
endorses you or your use of the work) as follows:

“Courtesy of Kevin Elphinstone, UNSW"

The complete license text can be found at

© Kovin Eghinstone. Distrbuted undor Creative Commons) HRY

2

Performance (vs. VAX-11/780)

CPU performance increases are slowing

100,000

10,000

1000

100

Multiprocessor System

A single CPU can only go so fast
Idea: Use more than one CPU to improve performance

Assumes
— Workload can be parallelised
— Workload is not 1/0-bound or memory-bound

= UNSW
4
] -
Amdahl’s Law Types of Multiprocessors (MPs)
Given: Speedup vs. CPUs
« Parallelisable fraction P
+ Number of processor ;' Classic symmetric
> SY TPU | [CPU o
+ Speedup § multiprocessor (SMP) — — P
S(N) = —F 0 * Uniform Memory Access Bus |
aQ-P+xy o Access to all memory occurs at the
1 same speed for all processors.
S(0) = —— .
a-p) . . = « Processors with local caches
Parallel computing takeaway: —em09 oo o Separate cache hierarchy
+ Useful for small numbers of CPUs = Cache coherency issues
« Or, high values of P
— Aim for high P values by design
UNSW UNSW

Cache Coherency

What happens if one CPU writes to address 0x1234 (and it
is stored in its cache) and another CPU reads from the

Problematic Example

Reduced bandwidth

a=1 b=1

if b == © then { if a == @ then {
/* critical section */ /* critical section */
a=90 b=20

} else { } else {

CPUA CPUB | -
Main
Memory
Bus | | |

Interconnect

a=1 b=1
same address (and gets what is in its cache)? ifb == 0 then { if a == 0 then {
« Can be thought of as managing replication and migration of data /% critical section */ /% critical section */
between CPUs s b-o
« Note: The unit of replication and consistency is the cache line } else { } else ¢
CPU CPU Main CPUA CPUB o
Cache Cache Memory Memory
Bus | | Bus | | |
UNSW UNSW
7 8
Memory Model: Sequential Consistency With sequential consistency
a=1 b=1
“the result of any execution is the same as if the operations of all the processors were if b == @ then { if a == @ then {
executed in some sequential order, and the operations of each individual processor . itical . ¥ ¥ itical : "
appear in this sequence in the order specified by its program.” [Lamport, 1979] /* critical section */ /* critical section */
a=2o0 b=20
} else { } else {
CPUA CPUB .
Memory
Bus | | |
9 10
Write-through Caches Types of Multiprocessors (MPs)
» For classic SMP a hardware solution is used
* Write-through caches i
» Each CPU cache snoops bus activity to invalidate stale lines Memory
* Reduces cache effectiveness — all writes go out to the bus.
Longer write latency NUMA MP T

« Non-uniform memory access

o Access to some parts of memory is

faster for some processors than !

other parts of memory
* Provides high-local bandwidth
and reduces bus contention
o Assuming locality of access

11

12

How is such a machine kept consistent?

Snooping caches assume
« write-through caches
+ cheap “broadcast” to all CPUs

Many alternative cache coherency protocols

They improve performance by tackling above assumptions

We'll examine MESI (four state)
— Optimisations exist (MOESI, MESIF)
‘Memory bus’ becomes message passing system between caches

Example Coherence Protocol MESI

Each cache line is in one of four states

Invalid (1)

« This state indicates that the addressed line is not resident in the cache and/or any data
contained is considered not useful.

Exclusive (E)

+ The addressed line is in this cache only.

« The data in this line is consistent with system memory.

Shared (S)

« The addressed line is valid in the cache and in at least one other cache.

+ Ashared line is always consistent with system memory. That is, the shared state is
shared-unmodified; there is no shared-modified state.

Modified (M)
« The line is valid in the cache and in only this cache.

+ The line is modified with respect to system memory—that is, the modified data in the
line has not been written back to memory.

) UNaW) UNaW
Example MESI (with snooping/broadcast)
SHR,
Events _ _)
CPU CPU el
(
= Invalid Shared |
RMS = Read miss, shared \ Invali L\RMS{Read: are i
RME = Read miss, exclusive 4
Cache Cache WH = Write hit
Invalldats\ i
WM = Write miss SHR SHI
SHR = Snoop hit on read SHR
SHI = Snoop hit on invalidate [Push] [Push] Read\ Push) RME wH
LRU = LRU replacement
Read s
oy
Bus Transactions /7 Modified | \ { B \\/RH
Main Memory Push = Write cache line back to memory NG Y e W H——— A
Invalidate = Broadcast invalidate ‘\\7/ T
Read = Read cache line from memory WH
Performance improvement via write-back caching
Less bus traffic
UNSW UNSW

15

16

-based coherence

k has a home

Directo

Each memory blo
node

Home node keeps directory of
caches that have a copy

« E.g., a bitmap of processors per

cache line
esmomecion ek
Pro
« Invalidation/update messages can [(
be directed explicitly / m«m

5 Nolonger rely on broadcast/snooping

Con

+ Requires more storage to keep
directory
o E.g. each 256 bits of memory (cache

line) requires 32 bits (processor mask)
of directory

Example
CPUA ||ICPUB ||CPUC ||ICPUD
| Cache | Cache | Cache | Cache
Main
Memory

UNSW

17

18

Summary

Hardware-based cache coherency:
« Provide a consistent view of memory across the machine.
* Read will get the result of the last write to the memory hierarchy

Main

Memory Ordering
CPU
Cache Memo'“/

CPU
| I

Bus

Example: a tail of a critical section
/* assuming lock already held */
/* counter++ */
load rl1, counter
add r1, rl1, 1
store rl, counter
/* unlock(mutex) */

store zero, mutex

Relies on all CPUs seeing update of counter before update of mutex

Depends on assumptions about ordering of stores to memory

19

20

Memory Models: Strong Ordering

Sequential consistency
— the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program

Potential interleavings

At least one CPU must load the other's new value

* Forbidden result: X=0,Y=0

Traditionally used by many architectures store 1, X store 1, X store 1, X
Assume X =Y = 0 initally load r2, v store 1, Y store 1, Y
store 1, Y load r2, Y load r2, X
storeCfU)? storeCfUY1 load r2, X load r2, X load r2, Y
Toad r2: Y Toad r2: X X=1,Y=0 X=1,v=1 X=1,v=1
store 1, Y store 1, Y store 1, Y
load r2, X store 1, X store 1, X
store 1, X load r2, X load r2, Y
load r2, Y load r2, v load r2, X
X=0,Y=1 X=1,Y=1 X=1,Y=1
B UNSW B UNSW
21 22
Realistic Memory Models Write-buffers and SMP
Stores go to write buffer to hide memory latency
Modern hardware features can interfere with store order: . And cache invalidates
« write buffer (or store buffer or write-behind buffer) Loads read from write buffer if possible 0o
« instruction reordering (out-of-order execution)
« superscalar execution and pipelining 1
Each CPU/core keeps its own execution consistent, but how e
is it viewed by others? CPU o] s
store ri, A Store A
store r2, B
store r3, C

load r4, A

23

24

Write-buffers and SMP

When the buffer eventually drains, what order does CPU1 see CPUQ'’s
memory updates?

CPUO
N
CPU ©
Store C
store r1, A CPU 1 .
store r2, B &4 "
store r3, C SO

Total Store Ordering (e.g. x86)

Stores are guaranteed to occur in FIFO order

CPUO

N

CPU 1 sees
CPU 0 A=1

Store C
store 1, A B=2 N
store 2, B c=3 b
store 3, C SO

Cache Cache
What happens in our example?
UNSW UNSW
25 26
Total Store Ordering (e.g. x86) Total Store Ordering (e.g. x86)
Stores are guaranteed to occur in FIFO order
Assume X =Y = 0 initially | ‘ ‘ |
CPUO CPUO CPU1
A A A
/* counter++ */ ¢ ¢
load r1, count CPU 1 sees -
add r1, ri, 1 count updated S CPUO CPU 1
store ri, counter mutex = @ ’ e store 1, X store 1, Y [€] store x € sy
/* unlock(mutex) */ € load r2, Y load r2, X
store zero, mutex _
l, What is the problem here? ‘l‘ l’
Cache Cache Cache
UNsw UNsw
27 28
Total Store Ordering (e.g. x86) Memory “fences”
o o Also called “barriers”
Stores are buffered in write-buffer and don’t appear on other CPU in time.
c £X=0. Y=0IIl The provide a “fence” between instructions to
an get X=0, Y=0!!!! cPUO ‘ ‘ cPU1 | prevent apparent re-ordering CPUD ‘ ‘ CPU1 |
Loads can “appear” re-ordered with preceding stores = Effectively, they drain the local CPU's write- 'y * = *
buffer before proceeding.
"~ "~
CPUO CPU 1 CPUO CPU 1
store 1, X store 1, Y [€] sworex €& swrev store 1, X store 1, Y [€] sworex € store v
load r2, v load r2, X fence fence
_ \Joad r2, v load r2, X
Toad r2, v ‘l’ ‘l' ‘l’ ‘l'
load r2, X
store 1’ X Cache Cache Cache Cache
store 1, Y
UNSW UNSW
29 30

Total Store Ordering

Stores are guaranteed to occur in FIFO order

Atomic operations?

CPUO CPU 1 o
11 r1, addrl 11 rl, addrl A
sc rl, addrl sc rl, addrl
Store A
e Store B
« Need hardware support, e.g. Store A
« atomic swap
« test & set
« load-linked + store-conditional
« Stall pipeline and drain (and/or bypass) write buffer i
« Ensures addr1 held exclusively
Cache
UNSW

o

Partial Store Ordering (e.g. ARM MPcore)

All stores go to write buffer

Loads read from write buffer if possible

CPU
Redundant stores are cancelled or merged
N
CPU © CPU 1 sees
Store A
store BUSY, addrl addr2 = VAL I
store VAL, addr2 addrl = IDLE €<
store IDLE, addril et
« Stores can appear to overtake (be re-ordered) other i
stores
« Need to use memory barrier
Cache

31

32

Partial Store Ordering (e.g. ARM MPcore)

The barriers prevent preceding stores appearing after
successive stores

Note: Reality is a little more complex (read barriers, write barriers), CPU
but principle similar.

load rl1, counter A
add r1, ri, 1
store rl, counter

i Store A
barrier
store zero, mutex e o8

Store A
« Store to counter can overtake store to mutex

« Need to use memory barrier
« Failure to do so will introduce subtle bugs:
« Critical section “leaking” outside the lock Cache

« i.e. update move outside the lock l'

MP Hardware Take Away

Each core/cpu sees sequential execution of own code
Other cores see execution affected by

« Store order and write buffers

« Cache coherence model

« Out-of-order execution

Systems software needs to understand:

« Specific system (cache, coherence, etc..)

« Synch mechanisms (barriers, test_n_set, load_linked — store_cond).

...to build cooperative, correct, and scalable parallel code

UNsw UNsw
33 34
MP Hardware Take Away Memory ordering for various Architectures
- N . oAb PARISC POWER SARC SPARC SPARC LGN pss ines aseres
Existing sync primitives (e.g. locks) will have e - " :
o . H feordered Y Y Y Y Y Y Y
appropriate fences/barriers in place frloads
« In practice, correctly synchronised code can ignore memory model. {;zilmd Y v ¥ Y Y Y v
Howev_er, racey code, i.e. code that gpdates shared memory Poes vy . .
outside a lock (e.g. lock free algorithms) must use ferstores
fences/barriers. eordared Y % Y Y Y Y Y Y Y Y Y Y
fter loads
* You need a detailed understanding of the memory coherence model. tomic
feordered Y Y Y Y Y
* Not easy, especially for partial store order (ARM). inloads
elgrr;:;red Y Y Y Y Y Y
ihsiores
ependent
oo |
ncoherent
struction |y Y Y Y Y Y Y Y Y Y
ipeline
UNSW UNSW
35 36

Concurrency Observations Kernel Locking

Locking primitives require exclusive access to the “lock” Several CPUs can be executing kernel code

« Care required to avoid excessive bus/interconnect traffic concu rrently,

Need mutual exclusion on shared kernel data.

Issues:
» Lock implementation
» Granularity of locking (i.e. parallelism)

38

Mutual Exclusion Techniques Hardware Provided Locking Primitives

Disabling interrupts (CLI — STI). int test_and_set(lock *);

= Insufficient for multiprocessor systems. int compare and swap (int c,

Spin locks. int v, lock *);
« Busy-waiting wastes cycles. int exchange (int v, lock *)

Lock objects (locks, semaphores). int atomic_inc(lock *)

« Flag (or a particular state) indicates object is locked.

* Manipulating lock requires mutual exclusion. v = load linked(lock *) / bool
store_conditional (int, lock *)

* LL/SC can be used to implement all of the above

¥ UNSW o UNSW
40
Spin locks Spin Lock Busy-waits Until Lock Is Released
void lock (volatile lock_t *1) { Stupid on uniprocessors, as nothing will change while
spinning.

while (test_and_set(l)) ;
}

void unlock (volatile lock_t *1) {

« Should release (block) thread on CPU immediately.

Maybe ok on SMPs: locker may execute on other CPU.
« Minimal overhead (if contention low).
« Should only spin for short time.

Generally restrict spin locking to:
« short critical sections,
« unlikely to (or preferably can't) be contended by thread on same CPU.
— local contention can be prevented
» by design (per-CPU data structure)
» by turning off interrupts

}

Busy waits. Good idea?

41 42

Spinning versus Switching

» Blocking and switching
— to another process takes time
» Save context and restore another
» Cache contains current process not new
= Adjusting the cache working set also takes time
» TLB is similar to cache
— Switching back when the lock is free encounters the same again

» Spinning wastes CPU time directly

Trade off

« If lock is held for less time than the overhead of switching
to and back

= It's more efficient to spin

Spinning versus Switching

The general approaches taken are
» Spin forever

» Spin for some period of time, if the lock is not acquired,
block and switch

— The spin time can be
» Fixed (related to the switch overhead)
» Dynamic
= Based on previous observations of the lock
acquisition time

Fuww B usw
43 44
Interrupt Disabling Alternative to spinning:
nditional Lock (TryLock
Assume no local contention by design, is disabling interrupt Co tio oc) (ryLoc)
. bool cond lock (volatile lock t *1) {
important? =
if (test and_set (1))
return FALSE; //couldn’t lock
Hint: What happens if a lock holder is preempted (e.g., at else
end of its timeslice)?
return TRUE; //acquired lock
}
All other processors spin until the lock holder is re-scheduled e .
P P Can do useful work if fail to acquire lock.
But may not have much else to do.
Livelock: May never get lock!
¥ UNSW B UNsW
45 46
Anoth It tive t s Common Multiprocessor Spin Lock
no er a erna Ive o Splnlnlng' void mp_spinlock (volatile lock t *1) {
void mutex lock (volatile lock t *1) { cli(); // prevent preemption
while (1) { while (test and set(l)) ; // lock
for (int i=0; i<MUTEX N; i++) }
if (!test and set(l)) void mp unlock (volatile lock t *1) {
return; *1=0;
yield(); sEL0;
) }
) Only good for short critical sections
Spins for limited time only Does not scale for large number of processors
- assumes enough for other CPU to exit critical section Relies on bus-arbitrator for fairmess
Useful if critical section is shorter than N iterations. Not appropriate for user-level
Starvation possible. Used in practice in small SMP systems
UNSW UNSW

47

48

Need a more systematic analysis

Thomas Anderson, “The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems, Vol 1, No. 1, 1990

Compares Simple Spinlocks
Test and Set
void lock (volatile lock t *1) {

while (test_and set(l)) ;

Test and Test and Set

void lock (volatile lock_ t *1) {

while (*1 == BUSY || test_and set(l)) ;
}
UNSW UNSW
49 50
test_and_test_and_set LOCK Benchmark
Avoid bus traffic contention caused by test_and_set until it is likely to succeed for i =1 .. 1,000,000 {
Normal read spins in cache lock (1)
Can starve in pathological cases crit_section()
unlock ()
compute ()
}
Compute chosen from uniform random distribution
of mean 5 times critical section
Measure elapsed time on Sequent Symmetry (20
CPU 30386, coherent write-back invalidate
caches)
UNSW UNSW
51 52
Results
Test and set performs poorly once there is enough CPUs to
cause contention for lock
- « Expected
w0 Test and Test and Set performs better
- « Performance less than expected
§ = « Still significant contention on lock when CPUs notice release and all
E 404 — ideal attempt acquisition
3 30 % ;I: !:rﬁ::‘: Critical section performance degenerates
g 20 « Critical section requires bus traffic to modify shared structure
it 4 « Lock holder competes with CPU that missed as they test and set
i — lock holder is slower
1 5 ; 1|3 \‘7 « Slower lock holder results in more contention
number of processors
UNSW UNSW

53

54

Idea

Can inserting delays reduce bus traffic and improve
performance

Explore 2 dimensions

* Location of delay
— Insert a delay after release prior to attempting acquire
— Insert a delay after each memory reference

Examining Inserting Delays

TABLE I
DILAY AFITR SHNNER NOTICRS RECEASID Lok
Lok while dhosk - BUSY or TestAndSer Leski = BUSY)
whic flock - BUSY)
Dy o
e,

TABLE IV
DELAY BETWEES EACH REVTRENCE

Lack whie ok = BUSY o TeaAndSet thck) = BUSY)

 Delay is static or dynamic it
— Static — assign delay “slots” to processors : —
» Issue: delay tuned for expected contention level
— Dynamic — use a back-off scheme to estimate contention
» Similar to ethernet
» Degrades to static case in worst case.
UNSW UNSW
55 56
Queue Based Locking Results
Each processor inserts itself into a waiting queue i
« It waits for the lock to free by spinning on its own separate]
cache line 154
~# gpin on rézd
» Lock holder frees the lock by “freeing” the next processors 8 + static release
cache line. | B Bisf oo
2 .
2 = packofl ref.
o 5 —+ queus
o T T T T
3 5] 13 17
number of processors
E UNsw g LW
57 58
Results
Static backoff has higher overhead when backoff is John Mellor-Crummey and Michael Scott, “Algorithms for
inappropriate Scalable Synchronisation on Shared-Memory
))) Multiprocessors”, ACM Transactions on Computer
Dynamic backoff has higher overheads when static Systems, Vol. 9, No. 1, 1991
delay is appropriate
« as collisions are still required to tune the backoff time
Queue is better when contention occurs, but has
higher overhead when it does not.
* Issue: Preemption of queued CPU blocks rest of queue
(worse than simple spin locks)
UNSW UNSW

59

60

10

MCS Locks

Each CPU enqueues its own private lock variable into a queue and spins
on it

« No contention

On lock release, the releaser unlocks the next lock in the queue

« Only have bus contention on actual unlock

« No livelock (order of lock acquisitions defined by the list)

crus—| 3]
CPU 3 spins on this (private) lock

[CPU 2 spins on this (private) lock

CPU 4 spins on this (private) lock

e e

MCS Lock

Requires
» compare_and_swap()
» exchange()
— Also called fetch_and_store()

4 T When GPU 1 is finished with th
en Is Tinished wi e
Shared memory / / real lock, it releases it and also
CPU 1 releases the private lock CPU 2
holds the is spinning on
real lock o) UNSW
type gnode = record
next : “quode
locked : Boolean
type lock = "gnode
// parameter I, below, points to a qnode recerd allocated
// (ir an enclosing scope) 1a shared memory locally-accessible
// to the invoking processor
procedurs acquire_lock (L : “lock, I : ~“qnode)
I->next := nal
predecessor : " 1= fetch_and_store (L, I)
if predecessor // queve was mon-empty
I->locked
predecessor->next := I
repeat wbile I->locked // epan
procedure release_lock (L : “leck, I: “gnode)
3f I->next = nil // me known successor
1t conmpare_and_swap (L, I, mil)
return
// compare_and_swap returns true iff it swapped
repeat while I->next = nil // spin
T->naxt->locked := false
B Unsw B Unsw
void mcs_acquire(mes_lock *L, mcs_gnode_ptr I) Selected Benchmark
{
L-snext - NULL; Compared
MEM_BARRIER;
- * test and test and set
mcs_gnode_ptr pred = (mcs_gnode*) SWAP_PTR(L, (void *)I);
’
1F (pred == NULL) » Anderson’s array based queue
* lock free * . .
{ /7 Jock was free 7/ » test and set with exponential back-off
MEM_BARRIER; ° MCS
return;
}
I->waiting = 1; // word on which to spin
MEM_BARRIER;
pred->next = I; // make pred point to me
}
UNSW UNSW

65

66

| e test & test & set
20 o o test & set, exp. backofl
21

Time |
(ns)

T— 1
0 2 4 6 8 10 12 1 16 1§
Processors

Fig. 17, Performance of spin locks on the Symmetry (empty critical section)

Confirmed Trade-off

Queue locks scale well but have higher overhead
Spin Locks have low overhead but don’t scale well
What do we use?

67

68

Beng-Hong Lim and Anant Agarwal, “Reactive
Synchronization Algorithms for Multiprocessors”, ASPLOS
VI, 1994
Mo contention With contantion
TestBSet i
bt 7 3 | w0 150
overhead: 10 cycles : overhead: 220 cycles.
P
Quawe Lock I
: Lock overhead
ovarhead: 21 cycles : overhead: 100 cycies [Uselul work (crilical section)
P — B UNSW UNsw
69 70
Idea
Can we dynamically switch locking methods to suit
the current contention level???
,E 512 ;
5 256 «75—/ #*
i g
g 128 f e ——
“ f
2 ,/.‘;" / cpmtone
~ Tehe ot
s T T ot
8 Idal
UNSW UNSW

71

72

12

Issues

How do we determine which protocol to use?
* Must not add significant cost
How do we correctly and efficiently switch protocols?

How do we determine when to switch protocols?

Protocol Selection

Keep a “hint”

Ensure both TTS and MCS lock a never free at the same
time

« Only correct selection will get the lock

« Choosing the wrong lock with result in retry which can get it right next
time

« Assumption: Lock mode changes infrequently
- hint cached read-only
— infrequent protocol mismatch retries

TestaTestaSet Lock Queue Lock

73

Changing Protocol

Only lock holder can switch to avoid race conditions
* |t chooses which lock to free, TTS or MCS.

When to change protocol

Use threshold scheme
* Repeated acquisition failures will switch mode to queue
+ Repeated immediate acquisition will switch mode to TTS

75

Results

\
|
™
!
N

Overhead (Gycles)
M

4

i Spin Locks

- Tast&Set w' backotf

4 Tost&Test&Set w/ backoll
-%- MCS Quaua Lock

- Peadive Lock

77

