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L4 Microkernels — Deployed by the Billions
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L4: The Quest for a
Real Microkernel
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L4: The Quest for a Real Microkernel

A concept is tolerated inside the microkernel
only if moving it outside the kernel, i.e.
permitting competing implementations, would
prevent the implementation of the system’s
required functionality. [Liedtke, SOSP’95]
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L4: 25 Years High Performance Microkernels

First L4 kernel
iOS secure with capabilities

enclave

API Inheritance
‘>

Code Inheritance
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L4 IPC Performance Over the Years
———_
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Original 1993 1486 250 5.00
Original 1997 Pentium 160 121 0.75
L4/MIPS 1997 R4700 100 86 0.86
L4/Alpha 1997 21064 433 45 0.10
Hazelnut 2002 Pentium 4 1,400 2,000 1.38
Pistachio 2005 Itanium 1,500 + 36 + 0.02
OKL4 2007 XScale 255 400 151 0.64
NOVA 2010 i7 Bloomfield (32-bit) 2,660 288 0.11
selL4 2013 ARM11 532 188 0.35
selL4 2018 i7 Haswell (64-bit) 3,400 442 0.13
selL4 2018 Cortex A9 1,000 303 0.30
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Minimality: Source-Code Size

Original 1486
L4/Alpha Alpha
L4/MIPS MIPS64
Hazelnut x86
Pistachio x86
L4-embedded ARMv5
OKL4 3.0 ARMv6
Fiasco.OC x86
selL4 ARMvG6
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What Have We Learnt
In 25 Years?
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Issues With 2G Microkernels

» L4 solved microkernel performance [Hartig et al, SOSP’97]
left a number of issues unsolved
* Problem: ad-hoc approach to security and resource management
* Global thread name space = covert channels [Shapiro’03]
« Threads as IPC targets = insufficient encapsulation
|* Single kernel memory pool = DoS attacks |
* No delegation of authority = impacts flexibility, performance
« Unprincipled management of time

Solved by capabilities
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Traditional L4: Recursive Address Spaces

Replaced by magic-free
selL4 resource model

O
Mappings are
page — page

Initial Address Space
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Physical Memory

Issues:
« Complex mapping DB
» Exhaustion of kernel memory

Magic initial AS to
anchor recursion
(map of PM)
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Issues With 2G Microkernels

» L4 solved microkernel performance [Hartig et al, SOSP’97]
left a number of issues unsolved

* Problem: ad-hoc approach to security and resource management
* Global thread name space = covert channels [Shapiro’03]
« Single kernel memory pool = DoS attacks

* No delegation of authority = impacts
« Unprincipled management of time

, performance

Solved by selL4

memory management
model
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Direct vs Indirect IPC Addressing

 Direct: Queue senders/messages at receiver
* Need unique thread IDs

« Kernel guarantees identity of sender

» useful for authentication

* Indirect: Mailbox/port object

« Just a user-level handle for the
kernel-level queue

« Extra object type — extra weight?

« Communication partners are anonymous

* Need separate mechanism
for authentication
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Receiver

v
Sender
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Sender destination

Port Port
v \
Sender Receiver
v v
Sender Receiver

© Gernot Heiser 2019 — CC Attribution License UNSW
2

< SYDNEY



Other Issues with L4 IPC Adressing

RPC reply from
wrong thread! 3_)3;3
<€ .
Client must do 3
load balancing? <« ?j‘} Client Server
>,
E / 3& All IPCs
IPC )3 Client Load Workers duplicated!
3 33 balancer Server
Client Recent L4 kernels adopt cap-
SCREL protected ports (endpoints)
Interpose
Access transparently’? « Inefficient designs
monitor « Poor information hiding
3_ -— ';} L - )3 » Covert channels [Shapiro ‘02]
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Issues With 2G Microkernels

» L4 solved microkernel performance [Hartig et al, SOSP’97]
left a number of issues unsolved

* Problem: ad-hoc approach to security and resource management
» Global thread name space = covert channels [Shapiro’03]
* Threads as IPC targets = insufficient encapsulation Solved by caps &
» Single kernel memory pool = DoS attacks endpoints

* No delegation of authority = impacts flexibility, performance
|- Unprincipled management of time |

Examine later
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Other Design &
Implementation Issues
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L4 “Long” IPC

Abandoned
in selL.4

Sender address space

Kernel copy

Page fault!
Receiver address space d
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L4 Timeouts

Limit IPC
blocking time

Thread,
Running Blocked

s

Rev(NIL_THRD, delay)

Timed
wait

v~ ‘
0D S
) /)
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Thread,
Blocked Running

¢

Thread,
Running Blocked

3

Send (dest, msg)

7R | |
I\ ) Wait (src, msg)
) v, T Kernel copy
? ? 77 f\"'
selL4 reply semantics “Q/,

prevent DOS-ing server!
* No theory/heuristics for determining timeouts
« Typically server reply with zero T.O., else «

 Added complexity
« Can do timed wait with timer syscall
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IPC Fastpath: Send Phase of Call
LR 1y Probgue™ ~ ==~~~ === === 7 = => Waitto recsive

. Save minimal state, get args

2) ldentify destination
=  Cap lookup;
get endpoint; check queue
3) Getreceiver TCB
. Check receiver can still run
. Check receiver priority is = ours

4)  Mark sender blocked and enqueue [ ReIsE R S B
= Create reply cap & insert in slot el figele bl

5)  Switch to receiver * time-slice donation
u Leave message registers untouched
=  Nuke reply cap

6) Epilogue (restore & return)

301 cycles
on Arm A9

Wait to receive
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Fastpath Coding Tricks

Common case: 0

slow =  cap_get_capType(en_c) !=cap_endpoint_cap | |
lcap_endpoint_cap_get_capCanSend(en_c);
if (slow) enter_slow_path();

« Reduces branch-prediction footprint Common case: 1
» Avoids mispredicts, stalls & flushes
« Uses ARM instruction predication

« But: increases slow-path latency (slightly)
 should be minimal compared to basic slow-path cost
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How About Real-Time Support?

* Kernel runs with interrupts disabled . .
: How about long-
* No concurrency control = simpler kernel )
_ _ running system calls?
« Easier reasoning about correctness

» Better average-case performance

Lots of
concurrency
in kernel!
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o 4 Incremental Consistency Paradigm

Kernel O(1) Kernel
entry operation exit

Enable
interrupts

Disable
interrupts

Abort &
restart later

O(1? A 0(1? 0(1}
operation o operation operation
- Long operation
_ Good fit for
Consistency event kernel!
Restartability .o ©®

Progress

interrupts

[ Check pending

L No concurrency in (single-core) kernel! J
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@24 Example: Destroying IPC Endpoint

Endpoint

Client! il
Message
queue
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@214 Difficult Example: Revoking Badge

Server
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WCET Analysis

Program Control-flow
binary graph

Micro-
architecture
model

LooL
bounds
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Pessimism!

Integer
linear
equations

Infeasible Scalability!
path info

© Gernot Heiser 2019 — CC Attribution License

VVVVVV



@214 WCET Analysis on ARM11

-9'9.5‘

u Observed
378 m Computed

0 100 200 300

us
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L4 Scheduler Optimisation: Lazy Scheduling

thread_t schedule() {

foreach (prio in priorities) { Problem: Unbounded
foreach (thread in runQueue[prio]) { scheduler execution time!
if (isRunnable(thread))
return thread;
else

schedDequeue(thread); Idea: leave blocked
) } threads in ready
return idleThread; queue, scheduler ™~

cleans up

N\

}

/

Server
Reply Wait()

*  Frequent blocking/unblocking in Client
IPC-based systems Call()
« Many ready-queue manipulations

BLOCKED
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@ 5214 Scheduler: Benno Scheduling

thread_t schedule() { Only current thread
foreach (prio in priorities) { needs fixing up at
fopooch-Cheeod inounOnouolonie o L : Al
if (thread=head(runQueue[prio])) PlsEnieRlle:
return thread;
=clee

<ehedDoguoualthooody. Idea: Lazy on
} unblocking instead
} on blocking
return idleThread,; - O N
} o
*  Frequent blocking/unblocking in Client
IPC-based systems Call()

« Many ready-queue manipulations

BLOCKED
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Scheduler Optimisation: Direct Process Switch

« Sender was running = had highest prio
» If receiver prio = sender prio = run receiver

« Arguably, sender should donate back Implication: Time slice
if it's a server replying to a Call() donation — receiver runs
* Hence, always donate on Reply Wait() on sender’s time slice

Idea: Don’t invoke
scheduler if you know
who’ll be chosen

- O
- Frequent context switches
in IPC-based systems CallO
 Many scheduler invocations Client

28 COMP9242 2019T2 WO05b: Microkernel D&



Remember: Delegation of Critical Sections

Client may frequently
invoke server without
using much of its own
time!

Running

~N Running

Client;, ? \

Server may run on
clients time slice, its
own or a combination

Client, ?

No accurate
accounting
for time
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@214 New Model: Scheduling Contexts

Classical thread attributes New thread attributes

* Priority * Priority
@’ Scheduling context capability

Capability

for time

* Time slice - o @

Presently i i
being merged
into mainline
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@214 Delegation with Scheduling Contexts

Passive servers
Running support migrating
thread model!

Client is charged

for server’s time
Y Passive Server

Server runs on client’s
scheduling context

31 COMP9242 2019T2 WO05b: Microkernel D&I © Gernot Heiser 2019 — CC Attribution License [:

VVVVVV



@214 Mixed-Criticality Support

For supporting mixed-criticality systems (MCS), OS must provide:
« Temporal isolation, to force jobs to adhere to declared WCET

% Solved by }
scheduling contexts

« Mechanisms for safely sharing resources across criticalities

What if budget expires
while shared server
executing on Low’s ™

schedguling context?

®

Passive Server

Client, ?
Crit: Low

. ... Client, R
: High a1\
Crit: Hig L
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Timeout Exceptions

Policy-free mechanism for dealing with budget depletion

Possible actions:

* Provide emergency budget to leave critical section

« Cancel operation & roll-back server

« Reduce priority of low-crit client (together with one of the above)
* Implement priority inheritance (if you must...)

33 COMP9242 2019T2 WO05b: Microkernel D&l © Gernot Heiser 2019 — CC Attribution License UNSW
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Issues With 2G Microkernels

» L4 solved microkernel performance [Hartig et al, SOSP’97]
left a number of issues unsolved
* Problem: ad-hoc approach to security and resource management
» Global thread name space = covert channels [Shapiro’03]
* Threads as IPC targets = insufficient encapsulation
» Single kernel memory pool = DoS attacks
* No delegation of authority = impacts flexibility, performance
« Unprincipled management of time

Solved by
scheduling contexts
& time-out
exceptions
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Lessons & Principles
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Original L4 Design and Implementation

Implement. Tricks [SOSP’93]
- Processkemel

* Mir a Modified
* Lazy scheduling
*  Direct process switch
» Non-preemptible
Retained

 Non= e

 Non-sta | onvention
e AS er
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Design Decisions [SOSP’95]

Synchronous IPC

Ri e struc
Zero-copy register messages
User-mode page-fault handlers

Threa inations
[PC-timeoauts

User-mode device drivers
M
Recursi struction
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Reflecting on Changes

Original L4 design had two major shortcomings:

1. Insufficient/impractical resource control

» Poor/non-existent control over kernel memory use

Inflexible & costly process hierarchies (policy!)

Arbitrary limits on number of address spaces and threads (policy!)
Poor information hiding (IPC addressed to threads)

Insufficient mechanisms for authority delegation

2. Over-optimised IPC abstraction, mangles:

« Communication

* Synchronisation

 Memory management — sending mappings
» Scheduling — time-slice donation

37 COMP9242 2019T2 WO5b: Microkernel D& © Gernot Heiser 2019 — CC Attribution License UNSW
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Design Principles

* Fully delegatable access control

 All resource management is subject to user-defined policies
» Applies to kernel resources too!

« Performance on par with best-performing L4 kernels
 Prerequisite for real-world deployment!

« Suitability for real-time use

* Important for safety-critical systems Largely in line with

« Suitable for formal verification traditional L4 approach!

* Requires small size, avoid complex constructs
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A Thirty-Year Dream!

Opcrating R. Stockton Gaines
Systems Editor

Specification and
Verification of the
UCLA Unixt Security
Kernel

Bruce J. Walker, Richard A. Kemmerer, and

Gerald J. Popek
University of California, Los Angeles

Data Secure Unix, a kernel structured operating sys-
tem, was constructed as part of an ongoing effort at
UCLA to develop procedures by which operating systems
can be produced and shown secure. Program verification
methods were extensively applied as a constructive
means of de ing security enfi

Here we report the specification and verification ex-
perience in producing a secure operating system. The
work represents a significant attempt to verify a large-
scale, production level software system, including all as-
pects from initial specification to verification of imple-
mented code.

Key Words and Phrases: verification, security,
operating systems, protection, programming methodolo-
gy, ALPHARD, formal specifications, Unix, security
kernel

CR Categories: 4.29, 4.35, 6.35

1. Introduction

Early attempts 1o make operating systems secure mere-
ly found and fixed fNlaws in existing systems. As these
efforts failed. it became clear that piecemeal alierations
were unlikely ever 1o succeed (200, A more systematic
method was required, presumadly one that controlled the
system’s design and implementation. Then secure opera-
tion could be demonstrated in a stronger sense than an in-
genuous claim that the last bug had been eliminated, par-
ticularly since production systems are rarely static, and er-
rors casily introduced.

Our research seeks 10 develop means by which an
operating system can be shown data secure, meaning that
direct access to data must be possible only if the recorded
protection policy permits it. The two major components
of this task arc: (1) developing system architectures that
minimize the amount and complexity of software involved
in both protection decisions and enforcement, by isolating
them into kerme/ modules, and (2) applying extensive
verification methods 1o that kernel software in order to
prove that our of data security criterion is met. This paper
reports on the lauer part, the verification experience.
Those interested in architectural issues should see [23]
Related work includes the PSOS operating system project
at SRI [25) which uses the hicrarchical design methodolo-
gy described by Robinson and Levitt in [26], and efforts
to prove communications software at the University of
Texas [31].

Every verification step, from the development of top-
level specifications to machine-aided proof of the Pascal
code, was carricd out. Although these steps were not
completed for all portions of the kernel, most of the job
was done for much of the kernel. The remainder is clear-
ly more of the same. We therefore consider the project
essentially complete. In this paper, as cach verification
step is discussed, an estimate of the completed portion of
that step is given, together with an indication of the
amount of work required for completion. One should
realize that it is esscntial to carry the verification process
through the steps of actual code-level proofs because most
sccurity flaws in rcal systems arc found at this level [20).
Security flaws were found in our system during
verification, despite the fact that the implementation was
wrilten carcfully and tested extensively. An example of

COMP9242 2019T2 WO05b: Microkernel D&

Our research seeks to develop means by which an
operating system can be shown data secure, meaning that
direct access to data musi be possible only if the recorded
protection policy permits it. The two major components
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