School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

o
[- -

I.I.Inlll>

NSW

SYDNEY

Australia’s
Global
University.

2019 T2 Week 05a
Real Time Systems Basics

@GernotHeiser
Incorporating material by Stefan Petters and Anna Lyons

Copyright Notice

These slides are distributed under the

Creative Commons Attribution 3.0 License

* You are free:
+ to share—to copy, distribute and transmit the work
* to remix—to adapt the work

« under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”
The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 201972 W05a Real-Time Systems © Gernot Heiser 2019 - CC Attribution License

Real-Time Basics

Real-Time Systems

COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW 3 CCOMP9242 2019T2 W05a Real-Time Systems © Gemnot Heiser 2019 — CC Attribution License UNSW
) H . .
What's a Real-Time System? Strictness of Temporal Requirements
A real-time system is a system that is required to react to stimuli from the * Hard real-time systems §
environment (including passage of physical time) within time intervals + Weakly-hard real-time systems £ g
dictated by the environment. . . =
« Firm real-time systems 5 E
[Randell et al., Predictably Dependable Computing Systems, 1995] . ¥ ﬁ 2
« Soft real-time systems 23
j=)
) - . * Best-effort systems B
Real-time systems have timing constraints, where the correctness of the 5
system is dependent not only on the results of computations, but on the time
at which those results arrive. [Stankovic, IEEE Computer, 1988]
Issues:
» Correctness: What are the temporal requirements?
« Criticality: What are the consequences of failure?
COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License @ UNSW 5 ‘COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Real-Time Tasks

Real-time tasks have deadlines
« Usually stated relative to release time

& Processing « Frequently implicit: next release time
5 time ? ? ?
I —
2 T
T_o T 1'2 s ime
s 8 S o void main(void) {
o 8 3 °
ko g init(); // initialise system
o
o while (1) {
T —,wait(); // timer, device interrupt, signal
T, _),doJ ob();
}
6 COMP9242 2019T2 WO5a Real-Time Systems © Gernot Heiser 2019 - CC Attribution License. @ UNSW

Real Time # Real Fast
System | Deadline | Single Miss Conseq_| Ultimate Conseq. |

Car engine ignition 2.5 ms Catastrophic Engine damage

Industrial robot 5 ms Recoverable? Machinery damage

Air bag 20 ms Catastrophic Injury or death

Aircraft control 50 ms Recoverable Crash

Industrial process 100 ms Recoverable Lost production,
plant/environment
damage

Pacemaker 100 ms Recoverable Death

7 ‘COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License . UNSW

Example: Industrial Control

1 L 1 1 1 L L Lo

|

1
T T T T T T T
10s 1s 100ms 10ms 1ms 100pus 10ps ius 100ns

<
«

8 COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Hard Real-Time Systems

« Safety-critical: Failure = death, serious injury
« Mission-critical: Failure = massive financial damage

» Deadline miss is catastrophic
» Steep and real cost function

Cost Deadline
Triggering
Event \
T >
Time
9 COMP242 2019T2 WO5a Real-Time Systems © Gemot Heiser 2019 — CC Attribution License UNSW

Challenge: Execution-Time Variance

Longest observed time

|
« Data-dependent execution paths
« Microarchitecture (caches)

N
~ WCET/BCET)
~ maybeorders
. of magnitude! '

E Safe lower bound Safe upper bound
5 o
£ o
- BCET WCET
0 20 40 60 80 100
Execution time
10 COMP9242 2019T2 WO05a Real-Time Systems © Gernot Heiser 2019 - CC Attribution License. @ UNSW

Weakly-Hard Real-Time Systems

* Most feedback control systems (incl life-support!)

« Control compensates for occasional miss

« Becomes unstable if too many misses
Tolerate small fraction | |« Typically integrated with fault tolerance for HW issues
of deadline misses

Cost Deadline
Triggering In practice, certifiers treat
Event \ critical avionics as hard RT
t >
Time

1 COMP9242 201972 W05a Real-Time Systems

© Germot Heiser 2019 — CC Attribution License UNSW

Firm Real-Time Systems

* Forecast systems
« Trading systems

Result obsolete if deadline
missed (loss of revenue)

Gain)
Deadline
Triggering
Event \
>
| -
Time
12 COMP9242 2019T2 WO5a Real-Time Systems © Gernot Heiser 2019 - CC Attribution License. @ UNSW

Google reattime systems

Soft Real-Time Systems

About 2,340,000,

* Media players
Deadline miss undesirable « Web services
but tolerable, affects QoS

In computer science, real-time computi
reactive computing describes hardware
svstems subiect 0 2 'rg

' Bounded y i
(Tardiness N
Cost Deadii T RN
eadline A V]
\/ - . ﬁ
Triggering Time ! > Time>
Event Tardiness
13 (COMP9242 2019T2 W05a Real-Time Systems © Gemot Heiser 2019 ~ CC Attibution License % : UNSW

Best-Effort Systems

No deadline

In practice, duration is
rarely totally irrelevant

Cost

Triggering
Event

1 >
Time

14 COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Real-Time Operating System (RTOS)

Requires analysis of
worst-case execution
time (WCET)

* Main duty is scheduling tasks to meet their deadline

« Designed to support real-time operation
« Fast context switches, fast interrupt handling
» More importantly, predictable response time -

Traditional RTOS is very primitive
« single-mode execution

* no memory protection

« inherently cooperative

« all code is trusted

RT vs OS terminology:

+ “task” = thread

« “job” = execution of thread
resulting from event

© Gemnot Heiser 2019 — CC Attribution License UNSW

15 CCOMP9242 2019T2 W05a Real-Time Systems

Real-Time Scheduling

» Ensuring all deadlines are met is harder than bin-packing
* Reason: time is not fungible

Deadline
missed!

A: needs 1

slot every 3

B: needs 3

slots every 9

16 COMP9242 2019T2 WO05a Real-Time Systems

Time

© Gernot Heiser 2019 — CC Attribution License @ UNSW

Real-Time Scheduling

« Ensuring all deadlines are met is harder than bin-packing
« Time is not fungible

Terminology:

« Aset of tasks is feasible if there is a known algorithm
that will schedule them (i.e. all deadlines will be met).

« A scheduling algorithm is optimal if it can schedule
all feasible task sets.

17 CCOMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License : UNSW

Cyclic Executives

« Very simple, completely static, scheduler is just table

while (true) {
+ Deadline analysis done off-line wait_tick();
* Fully deterministic job_10);
wait_tick();
Drawback: Latency of event handling is hyper-period Job_R0);
wait_tick(;
Jjob_10;
wait_tick();
Jjob_80);
wait_tick();
W T BT s B a0
Hyper-period (inverse base rate) }

18 COMP9242 2019T2 WO5a Real-Time Systems © Gernot Heiser 2019 — CC Altribution License. @ UNSW

Are Cyclic Executives Optimal?

« Theoretically yes if can slice (interleave) tasks while (brue) {
« Practically there are limitations: wait_tick();
+ Might require very fine-grained slicing job_10);

» May introduce significant overhead wait_tick();
Job_20;
wait_tick();
Job_10;
wait_tick();
job_80;

(o] - - -

Hyper-period (inverse base rate) }

© Gernot Heiser 2019 — CC Attribution License UNSW

19 COMP9242 201972 W05a Real-Time Systems

On-Line RT Scheduling

» Scheduler is part of the OS, performs scheduling decision on-demand
» Execution order not pre-determined
+ Can be preemptive or non-preemptive
* Priorities can be
« fixed: assigned at admission time
« scheduler doesn’t change prios
« system may support dynamic adjustment of prios
« dynamic: prios potentially different at each scheduler run

20 COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Fixed-Priority Scheduling (FPS)

« Classic L4 scheduling is a typical example:
« always picks highest-prio runnable thread
« round-robin within prio level
« will preempt if higher-prio thread is unblocked or time slice depleted

FPS is not optimal, i.e. cannot schedule some feasible sets

In general may or may not:
» preempt running threads

prio 255 . . =
* require unique prios

g L]

21 CCOMP9242 2019T2 W05a Real-Time Systems

© Gemnot Heiser 2019 — CC Attribution License UNSW

Rate Monotonic Priority Assignment (RMPA)
« Higher rate = higher period: ___'T: period
« T<T;= P>P; = 1[T: rate
P: priority
U: utilisation
+ Schedulability test: Can schedule task set with periods {T...T} if

Assumes “implicit”

deadiines: release U = X C/Ti<n(2'"-1) ‘ RMPA is optimal for FPS ‘
time of next job

U[%] 100 82.8 78.0 75.7 74.3 71.8 log(2)=69.3

22 COMP9242 2019T2 WO05a Real-Time Systems © Gernot Heiser 2019 — CC Altribution License. @ UNSW

Rate-Monotonic Scheduling Example

RMPA schedulability bound is
sufficient but not necessary

WCET
R) e = I:l
[
4 SOImAR20 2 l blocked n preemptedq
" Lol L1
| 1 [l |)
23 CCOMP9242 2019T2 W05a Real-Time Systems © Gemot Heiser 2019 — CC Attribution License. UNSW

AnOther RMPA Exam Ie Deadline
P ----h-

t, 3 5 20 20 25
, 2 8 30 27

t 1 15 50 0 30 0
Preemption Deadline 82
[Release | I |
t ’/ ' || |
h‘iiéiié 7‘|ééa&|
. r . 1t . 1 . I 1 . 1 . 1 . 1. 1,
24 COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Atribution License gLN,S(W

Dynamic Prio: Earliest Deadline First (EDF)

« Job with closest deadline executes
« priority assigned at job level, not task (i.e. thread) level
« deadline-sorted release queue

« Schedulability test: Can schedule task set with periods {T;...T,} if

U=y C/Tis1
Preemptive EDF is optimal ‘

25 (COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License: UNSW

FPS vs EDF

RMPA
3

26 COMP9242 2019T2 W05a Real-Time Systems

FPS vs EDF

RMPA t, ' I | I

t; | |: :] |

| 7‘. |7\ | 7‘ | I R |
Task P C T D UM

Misses
! deadline!

Irlr 3I_ I.|

t; 3 5 20 20 25 5
t 2 8 30 20 27 12
t 1 15 40 40 375 0
89.5
27 COMP242 2019T2 WO5a Real-Time Systems © Gemot Heiser 2019 — CC Attribution License : UNSW

FPS vs EDF

RMPA t; | | ' I

Misses
deadline!

)
B : EDF
p 1| Sl

\f | |] |7\‘ \7

© Gernot Heiser 2019 ~ CC Attribution License UNSW

28 COMP9242 2019T2 WO05a Real-Time Systems

| e

Resource Sharing

29 CCOMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 - CC Attribution License UNSW

Challenge: Sharing

Y

P

Sharing
introduces
dependencies
X,
Vehlcle control must ®

| see consistent state)

Shared Data
(waypoints etc)

Vehicle

Ground
Control

Comms

Navigation

30 CCOMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License. UNSW

Critical Sections: Locking vs Delegation

Client, RT terminology:
3 Send() Resource Server
|
Lock() 4
Unlock() Receivel
— or Poll()
Lock() Send
Unlock
0 Receive()
Client, or Poll()
?
31 ‘COMP9242 2019T2 W05a Real-Time Systems

© Gernot Heiser 2019 — CC Attribution License UNSW

@24 Implementing Delegation

Client, 3
=

Client, 3
Eervaloeal) (elientO (serv_remote() {
while (1) {
wait(ep); while (1) {
while (1) { ca.ll(ep),
/

‘wait(not_rq);
/* critical secblo% / /* critical section */
Reply&wait(ep); signal(not_ry); signal(not_ry);
} /
} wsdt(noc,rq);
smmm smmmm—"
}

32 COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

Problem: Priority Inversion

« High-priority job is blocked by low-prio for a long time
« Long wait chain: ti—t,—t;—t,
+ Worst-case blocking time of t; bounded by total WCET: C,+C5+C,

Critical

Blocked!
TS IS —. Y

\

33 CCOMP9242 2019T2 W05a Real-Time Systems

Preempted

© Germot Heiser 2019 — CC Aftribution License UNSW

Solution 1: Priority Inheritance ("Helping”)
t

34 COMP9242 2019T2 WO05a Real-Time Systems

Solution 1: Priority Inheritance ("Helping”)
If t; blocks on a resource held by t,, and P1>P,, then

— t, is temporarily given priority P4

— when t; rel the resource, its priority reverts to P,

35 CCOMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License. LNSW

Solution 1: Priority Inheritance ("Helping”)

If t; blocks on a resource held by t,, and P4>P,, then
— t, is temporarily given priority P4
— when t; rel the resource, its priority revertstoP,
— Long blocking V]
~_ chains!
— S A

P —
Transitive

|_Inheritance |-
Ny y
t5
ty
t3
t

'1F-
1)

36 COMP9242 2019T2 WOS5a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License g UNSW

Solution 1: Priority Inheritance ("Helping”)

If t; blocks on a resource held by t,, and P4>P,, then \
— t, is temporarily given priority P Priority Inheritance:

f p .+ © Easytouse
— when t, the resource, its priorit
= B » Potential deadlocks
» Complex to implement

Bad worst-case blocking times

Deadlock!

37 COMP9242 201972 W05a Real-Time Systems

Solution 2: Priority Ceiling Protocol (PCP)

» Aim: Block at most once, avoid deadlocks
« Idea: Associate ceiling priority with each resource
« Ceiling = Highest prio of jobs that may access the resource
* On access, bump prio of job to ceiling—. oo

~ Immediate prio ceiling ‘
protocol (IPCP)

38 COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License UNSW

IPCP vs PIP

39 CCOMP9242 2019T2 W05a Real-Time Systems © Gemnot Heiser 2019 — CC Attribution License UNSW

@214 ICPC Implementation With Delegation
Client.
prio P, Client
ek

_ EDF:Floor
_of deadlines

Each task must declare all resources at admission time —__ E—
« System must maintain list of tasks using resource | =asy to enforce
with caps

« Defines ceiling priority

Immediate Priority Ceiling:

« Requires correct prio config

« Deadlock-free

« Easy to implement

« Good worst-case blocking times

© Gernot Heiser 2019 — CC Attribution License UNSW

40 COMP9242 2019T2 WO05a Real-Time Systems

@24 Comparison of Locking Protocols

[N
2
3 Original Priority-
E— Ceiling Protocol
8 Priority-Inheritance
c Protocol
i)
s
c
Q
£
K9]
g
= Immediate Priority- Non-Preemptible
Ceiling Protocol Critical Sections
-
Priority Inversion Bound
1 CCOMP9242 2019T2 W05a Real-Time Systems © Gemot Heiser 2019 — CC Attribution License. UNSW

Scheduling Overloaded
RT Systems

42 COMP9242 2019T2 WO5a Real-Time Systems

© Gernot Heiser 2019 - CC Attribution License. @ UNSW 43 CCOMP9242 2019T2 W05a Real-Time Systems

Naive Assumption: Everything is Schedulable

Standard assumptions of classical RT systems:
« All WCETs known

« All jobs complete within WCET

« Everything is Trusted (' Which job)
- willmissits
More realistic: Overloaded system: « © = deﬁd"n?:? 4

« Total utilisation exceeds schedulability bound
« Cannot trust everything to obey declared WCET

© Gernot Heiser 2019 — CC Attribution License UNSW

Overload: FPS
t | i | ! | : I ! |

o oE o om |y wm b
\7“17“|7,‘1‘|.1‘|7‘.17x‘17?1‘

ts 3| 5 20 20 25
t, 2 12 20 20 60
1% 1 15 50 50 30
115
44 COMP9242 2019T2 WOSa Real-Time Systems © Genot Heiser 2019 — CC Aftibuion License

1 | old

New

Overload: FPS

CCOMP9242 2019T2 W05a Real-Time Systems

Overload: FPS vs EDF

| | ﬂ | | |] | | |

46 COMP9242 2019T2 WO5a Real-Time Systems

© Gernot Heiser 2019 — CC Attribution License @ UNSW

Overload:
t | l s' I Eo | | g

. | | EDF beharea
T

[P IR PR T I\dq’ ~ badlyunder
. overload”
t - . -

: 3 -

t, |
© Gernot Heiser 2019 — CC Attribution License UNSW

EDF

IR I (NP P I I I P S

COMP9242 201972 W05a Real-Time Systems

Mixed-Criticality Systems

48 COMP9242 2019T2 WO5a Real-Time Systems © Gernot Heiser 2019 - CC Attribution License. g

Mixed Criticality Systems i

49 COMP9242 201972 W05a Real-Time Systems

© Gemot Heiser 2019 — CC Attribution License. %

Mixed Criticality

Need temporal
isolation!

y N
| NW driver must preempt control loop | J
« ... to avoid packet loss
« Driver must run at high prio (i.e. RMPA)
\- Driver must not monopolise CPU
Runs frequently but for
Runs every 100 ms .
for a few millisecods ttoni e (G161 155
Sensor Control NW 3 NW
readings loop driver € interrupts

50 COMP9242 2019T2 W05a Real-Time Systems © Gernot Heiser 2019 — CC Attribution License.

Mixed Criticality

7

Y N

NW driver must preempt control loop J

« ... to avoid packet loss

= Driver must run at high prio (i.e. RMPA) /Critical system certification:
. * Driver must not monopolise CPU 4 + expensive

« conservative assumptions
* eg highly pessimistic WCET

More critical components must
not depend on any less critical
ones! [ARINC-653]

© Germot Heiser 2019 — CC Aftribution License UNSW

51 CCOMP9242 2019T2 W05a Real-Time Systems

