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The Memory Wall

11 T % WProc
O “Moore’s Law/, 60%lyr.
O
& 100 Processor-Memory
£ Performance Gap:
g 10 (grows 50% / year)
[ ~— DRAM
Q. R 7%Iyr

Multicore offsets stagnant per-core performance with proliferation of cores
- Same effect on overall memory bandwidth
- Basic trend is unchanged
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Caches

Chip i

Fast: 1-3 cycles

Small: 32 KiB — 16 MiB

3
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Disk

Slow: 10s—100s cycles
Large: GiB
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Cache Organisation: Unit of Data Transfer
byte...word line
Registers «— —o—~ CPU Cache ~—— == Main Memory

Line is also unit of allocation, holds data and
« valid bit

« modified (dirty) bit Reduce memory transactions:
« tag * Reads — locality
« access stats (for replacement) « Writes — clustering
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Cache Access

Virtual Physical Physical
Address Address Address

* Virtually indexed: looked up by virtual address
— operates concurrently with address translation

« Physically indexed: looked up by physical address
— requires result of address translation

« Usually a hierarchy: L1, L2, ..., LLC (last-level cache, next to RAM)
— L1 may use virtual address, all others use physical only
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Cache Indexing

byte

Address

tag

The ifag is used to distinguish lines of a set...

Consists of high-order bits not used for indexing
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tag data
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Cache Indexing

Line 1

Set0
Line 2

_

« Address hashed to produce index of line set
» Associative lookup of line within set

 nlines per set: n-way set-associative cache, typically n=1-16

— n =1 s called direct mapped Slow & power-hungry
Many conflicts — 2<n<wis called set associative
= low hit rate — n = is called fully associative

« Hashing must be simple (complex hardware is slow)
— generally use least-significant bits of address
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Cache Indexing: Direct Mapped

Offset bits used to

_ select appropriate
tag(s) indexs || offsety) bytes from line
| b
1 1
T o |7as |wodo  |wordt |woz |wods
VD Tag Word 0 Word 1 Word 2 Word 3
>
v VD Tag Word 0 Word 1 Word 2 Word 3
----- VD Tag Word 0 Word 1 Word 2 Word 3
Index bits
used to select
unique line
Tag used to check
whether line contains
requested address
8 COMP9242 2019T2 WO03b
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Cache Indexing: 2-Way Associative

tag )

index )

offset )

9

Offset bits used to
select appropriate
bytes from line

used to select
unique set to
match within

Index bits | D™
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| Word 2 Word 3

Tag checked against
both lines for match
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Cache Indexing: Fully Associative

tag s

offset,,

Offset bits used to select
appropriate bytes from line

|

Lookup hardware for many tags is
large and slow = does not scale
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Tag compared with
all lines for a match
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Cache Associativity vs Paging

0

page number || oo | When index overlaps page number,
a particular page can only reside in

a specific subset of the cache!

}

¢

Top/bottom
half
Tag
VD Tag Word 0 Word 1 Word 2 Word 3
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Cache Mapping Implications

Multiple memory
locations map to
same cache line

12

11 10 O1 10 Colour

BN BN BN Bon BY

If c index bits overlap page #, a page
can only reside in 2°¢ of the cache
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A page can only reside
in the part of the cache
defined by its colour

Cache is said to have 2¢ colours
2¢ = cache_size/(page_size x assoc)
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Cache Misses

* n-way associative cache can hold n lines with the same index value
* More than n lines are competing for same index forces a miss!

* There are different types of cache misses (“the four Cs”):

« Compulsory miss: data cannot be in the cache (of infinite size)
 First access (after loading data into memory or cache flush)

« Capacity miss: all cache entries are in use by other data
* Would not miss on infinite-size cache

» Conflict miss: all lines with the same index value are in use by other data
» Would not miss on fully-associative cache

« Coherence miss: miss forced by hardware coherence protocol
» Covered later (multiprocessing lecture)
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Cache Replacement Policy

* Indexing (using address) points to specific line set

« On miss (no match and all lines valid): replace existing line
 Dirty-bit determines whether write-back needed

« Replacement strategy must be simple (hardware!)

Typical policies:

LRU
pseudo-LRU
FIFO
“random”
toss clean

Address | tag g index, || bytew
|
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VD Tag Word 0 Word 1 Word 2 Word 3

VD Tag Word 0 Word 1 Word 2 Word 3

VD Tag Word 0 Word 1 Word 2 Word 3

VD | Tag Word 0 Word 1 Word 2 | Word 3
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Cache Write Policy

Typical combinations:

 Treatment of store operations
P . write-back &

» write back: Stores only update cache;

memory is updated once dirty line is replaced (flushed) Write allocate
clusters writes  write-through &
$8memory inconsistent with cache no-allocate

Fmulti-processor cache-coherency challenge
» write through: stores update cache and memory immediately
memory is always consistent with cache
Feincreased memory/bus traffic

« On store to a line not presently in cache (write miss):
» write allocate: allocate a cache line and store there
* typically requires reading line into cache first!
* no allocate: store directly to memory, bypassing the cache
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Cache Addressing Schemes

« So far pretended cache only sees one type of address: virtual or physical
 However, indexing and tagging can use different addresses!

* Four possible addressing schemes:
* virtually-indexed, virtually-tagged (VV) cache
* virtually-indexed, physically-tagged (VP) cache
» physically-indexed, virtually-tagged (PV) cache

» physically-indexed, physically-tagged (PP) cache . :
Iy 4 iy y-tagged (PP) Nonsensical except with

weird MMU designs
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Virtually-Indexed, Virtually-Tagged Cache

 Also called virtually-addressed cache

» Various incorrect names in use;

« virtyal cache
+ virtyal address-cache

« Uses virtual addresses only

« Can operate concurrently with MMU

* Usable for on-core L1

17

* Rarely used these days
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@

Permissions?
Write back?

CPU

tag g

index

byte )
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Virtually-Indexed, Physically-Tagged Cache

« Virtual address for accessing line (lookup)

CPU
« Physical address for tagging
* Needs complete address translation
for looking up retrieving data lVlMU
 Indexing concurrent with MMU index; || byte tagze)

e Used for on-core L1 ©

Use MMU for
tag check &
permissions
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Physically-Indexed, Physically-Tagged Cache

* Only uses physical addresses
« Address translation result needed for lookup
* Onl ible choice for L2...
Only sensible ¢ 0ice for LLC MMU

- y
Speed matters tages || indexz || byteg,
less after L1 miss

v
Page offset invariant under VA—PA:
* |ndex bits c offset bits
= don’'t need MMU for indexing!
'+ VP = PR inihis case o PyscaMemoy
= fast, suitable for L1
» Single-colour cache!

CPU
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Cache Issues

« Caches are managed by hardware transparently to software,
so OS doesn’t have to worry about them, sight=2 Wrong!

» Software-visible cache effects:

» performance
» cache-friendly data layout

* homonymes:
* same address, different data
 can affect correctness!

* synonyms (aliases):
» different address, same data
 can affect correctness!
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VAS; A
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Virtually-Indexed Cache Issues

Homonyms — same name for different data:

* Problem: VA used for indexing is CPU
context-dependent
» same VA refers to different PAs tag ¢, index,y bytey,

 tag does not uniquely identify data!
* wrong data may be accessed
* an issue for most OSes

« Homonym prevention:
 flush cache on each context switch
 force non-overlapping address-space layout MMU
 single-address-space OS v
 tag VA with address-space ID (ASID)
* makes VAs global
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Virtually-Indexed Cache Issues

Synonyms — multiple names for same data:

- Several VAs map to the same PA CPU
« frame shared between ASs
» frame multiply mapped within AS tag ) index,) byte

« May access stale datal
» same data cached in multiple lines
- ... if aliases differ in colour
* on write, one synonym updated
» read on other synonym returns old value

« physical tags or ASIDs don't help! Mll/lU

" Are synoryms 8 proviem? ~ PhysicalMemory

« depends on page and cache size (colours)
* no problem for R/O data or I-caches
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Example: MIPS R4x00 Synonyms

« ASID-tagged, on-chip VP cache
» 16 KiB cache, 2-way set associative, 32 B line size, 4 KiB (base) page size
* size/associativity = 16/2 KiB = 8 KiB > page size (2 page colours)
* 16 KiB / (32 B/line) = 512 lines = 256 sets = 8 index bits (12..5)
» overlap of tag bits and index bits, but from different addresses!

R b | : d 39 13 5 0
emember, only index L -

determines location of data! ‘
« Tag only confirms hit index (8 bits)

23

* Synonym problem iff VA, # VA, T tag (24 bits)
« Problem of virtually-indexed 35 K 0
cache with multiple colours offset PA
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Address Mismatch Problem: Aliasing

Address Space 1 Address Space 2
Page 0x0018§000 Cache Page 0x0208000

|
2nd half of cache v

« Page aliased in different address spaces
° AS»]: VA12 = 1,A82: VA12 =0

* One alias gets modified
* in a write-back cache, other alias sees stale data
* lost-update problem

1st half of
cache
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Address Mismatch Problem: Aliasing

‘ write

Address Space 1
Page 0x0018§000

Address Space 2
age 0x0208D00

« Unmap aliased page, remaining page has a dirty cache line
* Re-use (remap) frame for a different page (in same or different AS)

« Access new page
» without replication, new write will overwrite old (hits same cache line)
» with replication, alias may write back after remapping: “cache bomb”
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DMA Consistency Problem

EEENR H EEN

write

Cache

DMA

You’'ll have to
~ deal with this!

@
O

« DMA (normally) uses physical addresses and bypasses cache
* CPU access inconsistent with device access
« must flush cache before device write
« must invalidate cache before device read
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Avoiding Synonym Problems

* Flush cache on context switch
» doesn'’t help for aliasing within address space!

» Detect synonyms and ensure:
« all read-only, or
* only one synonym mapped

» Restrict VM mapping so synonyms map to same cache set
* eg on R4x00: ensure VA,, = PA,, — colour memory!

« Hardware synonym detection

» e.g. Cortex A53: store overlapping tag bits of both addresses & check
» “physically”’-addressed
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Summary: VV Caches

Fastest (don’t rely on TLB for retrieving data)
Festill need TLB lookup for protection
#6... or alternative mechanism for providing protection
Festill need TLB lookup or physical tag for writeback

FSuffer from synonyms and homonyms Historically used with
Ferequires flushing on context switches shallow hierarchies
$¢makes context switches expensive to support bigger L1

Fmay even be required on kernel—user switch
e ... Or guarantee no synonyms and homonyms

« Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale
« Used for I-caches on several other architectures (Alpha, Pentium 4)
» Not used on recent architectures

COMP9242 2019T2 W03b © Gernot Heiser 2019 — CC Attribution License UNSW
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Summary: ASID-Tagged VV Caches

« Add ASID as part of tag
* On access, compare with CPU’s ASID register

Removes homonyms

potentially better context-switching performance
FASID recycling still needs flush

FDoesn’t solve synonym problem (but that’s less severe)
FDoesn’t solve write-back problem
* Not used on recent architectures

SO sYDNEY
(e
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Summary: VP Caches

* Medium speed
lookup in parallel with address translation
Fotag comparison after address translation

No homonym problem
FPotential synonym problem

FeBigger tags (cannot leave off set-number bits)
Jeincreases area, latency, power consumption

« Used on most contemporary architectures for L1 cache
» but mostly single-colour (pseudo-PP) or with HW alias prevention (Arm)
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Summary: PP Caches

FSlowest
Ferequires result of address translation before lookup starts

No synonym problem

No homonym problem

Easy to manage

Cache can use for DMA/multicore coherency
Obvious choice for L2—-LLC where speed matters less
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Write Buffer

« Store operations can take a long time to complete
 eg if a cache line must be read or allocated t 1

« Can avoid stalling the CPU by buffering writes

CPU

 Write buffer is a FIFO queue of incomplete stores Store A
 Also called store buffer or write-behind buffer Store B
» May exist at any cache level, or between cache and memory

« Can fetch intermediate values out of buffer — _S_tf)reA

* to service read of a value that is still in write buffer
« avoids unnecessary stalls of load operations

* Implies that memory contents are temporarily stale
« on a multiprocessor, CPUs see different order of writes!
« “weak memory ordering”, to be revisited in SMP context

COMP9242 2019T2 W03b © Gernot Heiser 2019 — CC Attribution License UNSW
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Cache Hierarchy

Registers
 Hierarchy of caches to balance memory accesses: 1 $
« small, fast, virtually-indexed L1 I-Cache D-Cache

* large, slow, physically indexed L2—-LLC ‘ 1
« Each level reduces and clusters traffic Wiite U7 pug
» L1 split into |- and D-caches L2 Cache

- “Harvard architecture” ! 1

* requirement of pipelining Write buffer —»
» Other levels unified '

Last-Level Cache (LLC)

» Chip multiprocessors: |
» Usually LLC shared chip-wide ‘ Write buffer
» L2 private (Intel) or clustered (AMD) i

33 COMP9242 2019T2 W03b © Gernot Heiser 2019 — CC Attribution License UNSW
2



ODROID-C2 (Cortex A53) System Architecture

L1 cache:
« 32 KiB, 64-B lines
AS53 core  Ab3core  Ab3core  AbL3 core  L1-I: 2-way, virtually addr.

| | | | | | + L1-D: 4-way, “physically” addr.
L2 cache:
. 512 KiB, 16-way
64-B lines, physical

34 COMP9242 2019T2 W03b © Gernot Heiser 2019 — CC Attribution License UNSW
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Translation Lookaside Buffer (TLB)

« TLB is a (VV) cache for page-table entries

« TLB can be

* hardware loaded,
transparent to OS ASID VPN

» software loaded,
maintained by OS

 TLB can be:
* split: I- and D-TLBs
* unified

VYV VYV VY

ASID VPN PFN flags
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TLB Size (I-TLB+D-TLB)
I P e

VAX-11 64—256
ix86 32i + 64d
MIPS 96-128
SPARC 64
Alpha 32-128i + 128d
RS/6000 (PPC) 32i + 128d
Power-4 (G5) 1024
PA-8000 96i + 96d
ltanium 64i + 96d
ARMv7 (A9) 64—128

x86 (Skylake) L1:128i+64d; L2:1536
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full
full
full

full
full
1-2

Not much
growth in 40

years! b

Coverage
0.5KiB  32-128 KiB O

4 KiB + 4 MiB 128 KB _©
4 KiB—-16 MiB  384-512 KiB
8 KiB — 4 MiB 512 KiB
8 KiB — 4 MiB 256 KiB
4 KiB 256 KiB
4 KiB 512 KiB
4 KiB — 64 MiB 384 KiB
4 KiB — 4 GiB 384 KiB
4 KiB-16 MiB  256-512 KiB
4 KiB + 2/4 MiB 1 MiB
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TLB Size

TLB coverage
 Memory sizes are increasing
 Number of TLB entries are roughly constant

« Base page sizes are steady
» 4 KiB (SPARC, Alpha used 8KiB)
« OS designers have trouble using superpages effectively

« Consequences:
» Total amount of RAM mapped by TLB is not changing much
* Fraction of RAM mapped by TLB is shrinking dramatically!
* Modern architectures have very low TLB coverage!

« The TLB can become a bottleneck
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Multi-Level TLBs

Multi-level design (like I/D cache)

Improve size-performance tradeoff

Intel Core i7
I-Mm
4 KiB 4-way
1 D 4 KiB 4-way 64
1 | 2/4 MiB fully 7
1 D 2/4MiB 4-way 32
2 unif 4KiB 4-way 512
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L1 D-TLB

L1I-TLB

Unified L2 TLB

Arm A53

IM“

4 KiB-1 GiB? full?
1 D 4 KiB-1 GiB? full? 10
2 unif 4KiB-512MiB 4-way 512
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Intel Core i7 (Haswell) Cache Structure

Instruction Decoder and front end

L4y

Out-of-Order Engine

ITLB Instruction
Cache .
Chipset

o

vvvvvv

QPI
¢ Y
STLB ‘ IMC
Data TLB < » ¢
i
L3 Cache
Source: Intel
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Intel Haswell L3 Cache

N A
PCle DMI
DRAM
>
pisp | |[PEG| [OMI| |pcre| [Mc S
Eng Brdg
System Agent
CPU Core L3 Slice
CPU Core L3 Slice
CPU Core L3 Slice |
| cPU core L3 Slice

Source: Intel
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Processor Graphics/
Media Engine
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