6/4/2019

COMP9242 Advanced OS

T2/2019 WO1: Introduction to seL4
@GernotHeiser

Engineering Computer Stience and Engineering

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work
— to remix—to adapt the work

» under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

2 COMP9242T2/2019W01 ©2017 Gernot Heiser. Distributed under CC Attribution License E UNSW
==

@ IPC Message Format

Raw data

CSpace reference for receiving
caps (Receive only)

Caps (on Send)
Badges (on Receive)

/
Tag Message

#
Ca}ps

Caps
unwrapped

Msg ‘

Label | Length

itmap indicating
caps which had
badges
extracted

Meaning defined
by IPC protocol
(Kernel or user)

Caps sent
or received

Note: Don’t need to deal with this explicitly for project

@ Client-Server IPC Example

Load into
tag register

Set message
register #0

i

Allocate slot & retype to EP

Mint cap with
badge 0xff

Implicit use

pk R i

3 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License E UNSW

| of reply cap P
4 COMP9242T2/2019WO1 ©2017 Gernot Heiser. Distributed under CC Attribution License E UNSW

pk R i

@ Server Saving Reply Cap

ut_alloc (selLd_EndpointBits, &cspace);
ace_alloc_slot (&cspace) ;

| retype (scspace,
seLd_EndpointObject, selLd EndpointBits);
seL4_CPtr badged ep = cspace_alloc_slot (scspace) ;
c mint (¢cspace, badged ep, &cspace, ep, seld AllRights,

;eLﬁl_Word badge; Save reply cap
seL4_MessageInfo t msg = seL4 Recv(cptr, sbadge); n CSpace
Explicit use
Reply cap no of reply cap
longer valid

dW Derived Capabilities

« Badging is an example of capability derivation
« The Mint operation creates a new, less powerful cap
— Can add a badge
o uint G y)~
— Can strip access rights
o eg WR—R/O
= Granting transfers caps over an Endpoint® ©
— Delivers copy of sender’s cap(s) to receiver
o reply caps are a special case of this
— Sender needs Endpoint cap with Grant permission
— Receiver needs Endpoint cap with Wwrite permission
o else Write permission is stripped from new cap
* Retyping
— Fundamental operation of seL4 memory management
— Details later...

Remember,
caps are
kernel objects!

5 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License E UNSW
(e

6 COMP9242T2/2019W01 ©2017 Gernot Heiser. Distributed under CC Attribution License E UNSW
==

6/4/2019

€= sel4 System Calls

Will change
« Notionally, seL4 has 6 syscalls: soon
— Yield(): invokes scheduler Q
o only syscall which doesn’t require a capf’
— Send(), Recv() and 3 variants/combinations thereof
o signal()is actually not a separate syscall but same as Send()

— This is why | earlier said “approximately 3 syscalls” ©

« All other kernel operations are invoked by “messaging”
— Invoking cal1l() on an object cap
o Logically sending a message to the kernel
— Each object has a set of kernel protocols
o operations encoded in message tag
o parameters passed in message words
— Mostly hidden behind “syscall” wrappers

% seL4 Memory-Management Principles

* Memory (and caps referring to it) is typed:
— Untyped memory:
o unused, free to Retype into something else
— Frames:
o (can be) mapped to address spaces, no kernel semantics
— Rest: TCBs, address spaces, CNodes, EPs
o used for specific kernel data structures
« After startup, kernel never allocates memory!
— All remaining memory made Untyped, handed to initial address space
« Space for kernel objects must be explicitly provided to kernel
— Ensures strong resource isolation
Extremely powerful tool for shooting oneself in the foot!
— We hide much of this behind the cspace and ut allocation libraries

7 COMP9242T2/2019W01 ©2017 Gernot Heiser. Distributed under CC Attribution License E UNSW
=25

8 COMP9242T2/2019 W01 ©2017 Gernot Heiser. Distributed under CC Attribution License E umw
(e

dm Capability Derivation

* Copy,Mint,Mutate, Revoke are invoked on CNodes

Mint{Cse , dest, src, rights,V)

— CNode cap must provide appropriate rights
* Copy takes a cap for destination
— Allows copying of caps between Cspaces
— Alternative to granting via IPC (if you have privilege to access Cspace!)

9 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License UNSW

10 COMP9242T2/2019 W01 ©2017 Gernot Heiser. Distributed under CC Attribution License

cspace andut libraries

Manages Wraps messy
i Cspace tree &
slot management

dW seL4 Memory Management Approach

Strong isolation,
No shared kernel
resources

Resources fully
delegated, allows
autonomous

operation ‘ Addr

Space | | Space

‘ Addr

Resource Manager

RM
Data

Resource Manager

RM
Data

Global Resource Manager

RAM

11 COMPg242T2/2019WO1 ©2017 Gernot Heiser. Distributed under CC Attribution License E UNSW
=

12 COMP9242T2/2019 W01 ©2017 Gernot Heiser. Distributed under CC Attribution License E UNSW
=

6/4/2019

Memory Management Mechanics: Ret ype

&= >

Retype (Untyped, 2') //A(?tﬁ'-]lly more
°0Q general

%, (incremental

— retype)

Retype (Frame, 22) etype (Untyped

Retype (CNode, 2™, 2n) Retype (TCB,2")

Revoke ()

F0|F1|FZ|F3

A sel4 Address Spaces (VSpaces)

« Very thin wrapper around hardware page tables
— Architecture-dependent
— ARM & x86 similar (32-bit 2-level, 64-bit 4-5 level)

ARM 64-bit ISA (AARCH64):
— page global directory (PGD)
— page upper directory (PUD)
— page directory (PD)

— page table (PT)

« AVSpace is represented
by a PGD object:
— Creating a PGD (by Retype)
creates the VSpace
— Deleting the PGD deletes
the VSpace

PageTable_Map(PD)

13 COMP92427T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License E UNSW

14 COMP9242 T212019 W01 ©2017 Gernot Heiser. Distributed under CC Attribution License E UNSW

>

" PoorAPI
E choice!

A Address Space Operations

seLd_Word paddr = 0;
ut_t *ut = ut_alloc_4k_untyped (&paddr) ;

seL4_CPtr frame = cspace_alloc_slot (&cspace) ;
err = cspace_untyped_retype (&cspace, ut->cap, fram cap to top-level

seLd_ARM_SmallPageObject, seld_PageBits): page table
err = map_frame (&cspace, frame, pgd_cap, .
.seld_AllRights, seld Default VMAttributes);
s

o .
Each mapping has:
 virtual_address, phys_address, address_space and frame_cap
» address_space struct identifies the level 1 page_directory cap
+ you need to keep track of (frame_cap, PD_cap, v_adr,
p_adr)!
— seL4_ARCH_Page_Unmap(frame_cap) ;
cspace_delete (&cspace, frame);
cspace_free_slot (&cspace, frame);
ut_free (ut, selL4_PageBits);

A Multiple Frame Mappings: Shared Memory

seLd_CPtr new_frame_cap = cspace_alloc_slot (scspace);
seL4_Error err = cspace_copy (&cspace, new_frame_cap,
&cspace, frame,
seLd_AllRights);
err = map_frame (scspace, new_frame cap, pgd_cap, 0xA0000000,
seLd_AllRights,
selL4_Default VMAttributes);

seL4_ARCH Page_Unmap (frame) ;
cspace_delete (&cspace, frame);
cspace_free_slot (scspace, frame);

selL4 ARCH Page Unmap (new_frame cap);
cspace_delete (&cspace, new_frame_cap) ;
cspace_free_slot (scspace, new_frame cap);
ut_free(ut, selLd PageBits);

Each mapping requires its own frame cap even for the same frame

15 COMP9242T2/2019 W01 ©2017 Gernot Heiser. Distributed under CC Attribution License ? UNSW

>

COMP9242T2/2019 W01 ©2017 Gernot Heiser. Distributed under CC Attribution License ? UNSW

A Memory Management Caveats

» The UT table handles allocation for you
» Asimple list-based allocator, you need to understand how it works:
— Freeing an object of size n: you can allocate new objects <= size n

— Freeing 2 objects of size n does not mean that you can allocate an
object of size 2n.

Object Size (B), Alignment (B),
AARCH64 AARCH64

Frame 242 242

PT/PD/PUD/PGD 22 212

Endpoint 24 24

>

Notification 25 25 A Implemgntation >\ + We provide a frametable that
Cslot 2 O o2t & clicice == ‘ integrates with ut_alloc to manage
Cnode 2212 212 I \ J the 4KiB untyped size.

TCB 21 21 [&frames - You can modify as required

A Memory-Management Caveats

» Objects are allocated by Retype() of Untyped memory

+ The kernel will not allow you to overlap objectsc o) “But debugglng

» ut_alloc and ut_free() manage user-level's view of % pioftmarei
you try!! 2
Untyped allocation. T~

— Major pain if kernel and user’s view diverge
— TIP: Keep objects address and CPtr together.

« Be careful with allocations!

« Don't try to allocate all of physical
Untyped Memory 21°B memory as frames, you need more
memory for TCBs, endpoints etc.

17 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License E UNSW

18 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License E UNSW
=R Rt

6/4/2019

3 Threads

« Theads are represented by TCB objects
« They have a number of attributes (recorded in TCB):
— VSpace: a virtual address space
o page global directory (PGD) reference
o multiple threads can belong to the same VSpace
— CSpace: capability storage
o CNode reference (CSpace root) plus a few other bits
Fault endpoint
o Kernel sends message to this EP if the thread throws an exception
— IPC buffer (backing storage for virtual registers)
— stack pointer (SP), instruction pointer (IP), user-level registers
— Scheduling priority and maximum controlled priority (MCP)

— Time slice length (presently fixed)o °
« These must be explicitly managed © Yes, this is
— ... we provide an example you can modify broken!

3 Threads

Creating a thread
+ Obtain a TCB object
« Set attributes: Configure()
— associate with VSpace, CSpace, fault EP, prio, define IPC buffer
« Set scheduling parameters
— priority (maybe MCP)
« Set SP, IP (and optionally other registers): WriteRegisters()
— this results in a completely initialised thread
— will be able to run if resume_target is setin call, else still inactive
Activated (made schedulable): Resume()

-
19 COMP9242T2/2019 W01 ©2017 Gernot Heiser. Distributed under CC Attribution License E Mw
et

2

S

COMP9242T2/2019 W01 ©2017 Gernot Heiser. Distributed under CC Attribution License E uhlsw
R

3 Creating a Thread in Own AS and Cspace

If you use threads, write a library to create and destroy them.

3 Threads and Stacks

« Stacks are completely user-managed, kernel doesn’t care!
— Kernel only preserves SP, IP on context switch
« Stack location, allocation, size must be managed by userland
« Beware of stack overflow!
— Easy to grow stack into other data
o Pain to debug!
— Take special care with automatic arrays!

‘ |Stack1 <_| | |Stack2|(_| ‘

£0 1

int
buf[10000] ;

}

21 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License ﬁ uwgw

22 COMP9242T212019 W01 ©2017 Gernot Heiser. Distributed under CC Attrbution License E LJNSW

3 Creating a Thread in New AS and CSpace

L4_TCB_Configure (tcb, fault_ep, , sel4_NilData,
, seldNilData,
PROCESS_IPC_BUFFER, . buffer_cap);

3 sel4 Scheduling

Better model in
“MCS” branch —
merge soon

>/

« Present selL4 scheduling model is fairly naive
* 256 hard priorities (0—-255) .0
— Priorities are strictly observed
— The scheduler will always pick the highest-prio runnable thread
— Round-robin scheduling within prio level
« Aim is real-time performance, not fairness
— Kernel itself will never change the prio of a thread
— Achieving fairness (if desired) is the job of user-level servers

23 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License E L;Msw
el

24 COMP9242T2/2019 W01 ©2017 Gernot Heiser. Distributed under CC Attribution License E lMW
e

6/4/2019

3 Exception Handling

« Athread can trigger different kinds of exceptions:
— invalid syscall
o may require instruction emulation or result from virtualization
capability fault
o cap lookup failed or operation is invalid on cap
page fault
o attempt to access unmapped memory
o may have to grow stack, grow heap, load dynamic library, ...
— architecture-defined exception
o divide by zero, unaligned access, ...
« Results in kernel sending message to fault endpoint
— exception protocol defines state info that is sent in message
* Replying to this message restarts the thread
— endless loop if you don’t remove the cause for the fault first!

m Interrupt Handling

(IRQ triggered.
Kernel fakes signal
on Notification

Handler performs
appropriate action.
—

Interrupt
handler
(driver)

Handler waits
on Notification

N

ernel ACKs IRQ

;

25 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License E uN W

26 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License E UNSW
G s e

ﬁ Interrupt Management

« sel4 models IRQs as messages sent to a Notification
— Interrupt handler has Receive cap on that Notification
« 2 special objects used for managing and acknowledging interrupts:
— Single IRQControl object
o single IRQControl cap provided by kernel to initial VSpace
o only purpose is to create IRQHandler caps
— Per-IRQ-source IRQHandler object
o interrupt association and dissociation
o interrupt acknowledgment
o edge-triggered flag

= IRQControl
Get(usb) seld CPtr irq = cspace alloc_slot (&cspace) ;
seld Error err = cspace irq control get(scspace, irg, seLd CapIRQControl,
e iy
|RQHandler true_if_edge_triggered);
seL4_IRQHandler_ SetNotification(irg, ntfn);
PO S seL4_TRQHandler Ack(irq);
:‘ ACK to unmask IRQ

ﬁ Interrupt Handling

« IRQHandler cap allows driver to bind Notification to interrupt
« Afterwards:
— Notification is used to receive interrupt
— IRQHandler is used to acknowledge interrupt
IRQHandler
C= SetEndpoint(notification)
-
Wait(notification)

Ack(handler)

27 CcoMP9242 T2/2019 W01

© 2017 Gernot Heiser. Distributed under CC Attribution License ? UNSW

28 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License ? uN§W

3 Device Drivers

« InselL4 (and all other L4 kernels) drivers are usermode processes
« Drivers do three things:

— Handle interrupts (already explained)

— Communicate with rest of OS (IPC + shared memory)

— Access device registers
« Device register access

— Devices are memory-mapped on ARM

— Have to find frame cap from bootinfo structure

— Map the appropriate page in the driver's VSpace

device_vaddr = sos_map_device (scspace, 0xA0000000, BIT(selLd_PageBits));

*((void *) device vaddr= ..; \

lagic device
register access

Project Platform: ODROID-C2

ODROID-C2 Board

seL4_DebugPutChar()

—
[Armlogic $905 SoC
ARMV8 ARMv8 Timer ‘ connector
Cortex-A53 | | Cortex-A53
Core Core Serial MO: serial over LAN
for userlevel apps
Ethernet el
ARMv8 ARMv8 connector
Cortex-A53 | | Cortex-A53
Core Core Other... M6: Network File
System (NFS)
2 GiB Memory

29 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License E UNSW

30 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License E UNSW
=R Rt

6/4/2019

in the Real World (Courtesy Boeing, DARPA)

31 COMP9242T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License g UNSW

