COMP9242 Advanced OS

=
UNSW S2/2016 W12: Local Systems Research
AUSTRALIA
@GernotHeiser
Never Stand Still Engineering Computer Science and Engineering

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work
— to remix—to adapt the work

» under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

=
2 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AAAAAAAAA
B

Present Systems are NOT Trustworthy!

TECTIRR Srirens

Yet they are expensive:

+ $1,000 per line of code for
“high-assurance” software!

3 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AAAAAAAAA

[

Trustworthy Systems Vision

Suitable for
real-world
systems

We will change the practice of designing and
implementing critical systems, using rigorous
approaches to achieve true trust{orthiness

Hard
guarantees on
safety/security/
reliability

=
4 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License usN'SW

|t

@ =14 Isolation is Key!

Identify, minimise and
isolate critical

components! Critical,
trusted

Complex,
untrusted

Sensitive
App

Defines
access
rights

System-
specific,
simple!

Linux Trusted
Server Service

General-
purpose

Trustworthy Microkernel —seL4 0@,

Processor

5 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UN§W

[

Mechanisms
for enforcing
isolation

@::14 Trustworthy Systems Agenda

1. Dependable microkernel (seL4) as a rock-solid base

2. Lift microkernel guarantees

to whole system

— Use kernel correctness and integrity
to guarantee critical functionality

— Ensure correctness of balance of
trusted computing base

— Prove dependability properties of
complete system
o despite 99 % of code untrusted!

6 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UN§W

[

Requirements for Trustworthy Systems

Security

Isolation!

7 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW
Lo

@214 Provable Security and Safety
Isolation
properties

Abstract [ITP’11, S&P’13]

Model Functional
correctness
[SOSP’09]

Translation C Imple- Exclusions (at present):

correctness mentation « Initialisation

[PLDI13] o
* Privileged state & caches

Worst-case * Multicore

[R%;?:’,It'o;.rt;\:,‘: 6] * Covert timing channels

=
8 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW
|

Proving Functional Correctness

Refinement: All

117,000 lop ibl
o0 possible
jr O implementation
— behaviours are
} captured by mo/del
O
o)

50,000 lop
-~

|

Proving Functional Correctness

constdefs
schedule ::
"schedule
threads

thre

"unit s_monad"

do_machine_op OR return ();
PR R | BV = Flanm~ A DY
schedule :: Kernel
schedule = do
action <- getScheduleraction
case action of
oid
Sgtp:??[ituéiéév‘;ﬂttptr’ prio_t prio) { rT}llread
Slice curThread
if(thread_state_get_tchQueued(tptr->tchState)) { e == 0) chooseThread

oldprio = tptr-rtcbPriority;
ksReadyQueues[oldprio] = tchSchedDequeue(tptr, ksReaduyQueues(c
if(isRunnable(tptr)) {

ksReadyQueues[prio] = tchSchedEnqueus(tptr, ksReadyQueues

else {
thread_state_ptr_set_tcbQueued(&tptr->tchState,);

3

tptr->tcbPriority = prio;

oid
yieldTo(tch_t *target) {
target->techTineSlice += ksCurThread->tchTimeSlice;

MIT

Technology
Review

A LISTS | INNOVATORSUNDER35 = DISRUPTIVECOMPANIES BREAKTHROUGH TECHNOLOGIES

|0 BREAKTHROUGH
TECHNOLOGIES

Crash-Proof Code

Making critical software safer

7 comments
WILLIAM BULKELEY

Share

Formal Verification Summary

Kinds of properties proved

+ Behaviour of C code is fully captured by abstract.model

» Behaviour of C code is fully captured by executablé\i\&del

» Kernel never fails, behaviour is always well-defined . B
« assertions never fail
¢ will never de-reference null pointer
¢ cannot be subverted by misformed input

» All syscalls terminate, reclaiming memory is safe, ...

* Well typed references, aligned objects, kernel always mapped...

* Access control is decidable

Can prove further
properties on
L abstract level!)

Did you find bugs?
* During (very shallow) testing: 16

 During verification: 460
¢ 160 in C, ~150 in design, ~150 in spec

12 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License @ UNSW
[N

AUS TRALIA

@ ::'4 Isolation Goes Deep

High 2 Low 2
v v W

ol | S

Kernel data
partitioned
like user data

AAAAAAAAA

=
13 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

B

Multicore

AAAAAAAAA

=
14 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

B

Microkernel vs Linux Execution

App

Linux Kernel 10s of ms

App

Microkernel
Server 10s of ms
Kernel

\ 0.1us

AAAAAA

Cache Line Migration Latencies

L1 cache

L2/L3 cache

Data transfer takes
much longer than
code execution!

\

Main memory

AAAAAA

@ =4 Cost of Locking

X86 (Haswell) ARM A9
600 T T T T T T T
500 |- e
o 400 H= B NS SR
o |
% 300 H b
200 H st oo || w
[aV} [sp] o o
100 1 U - S O (RN N O B
| \‘I(| |
S >
s go &
E; > '5;'5; 4?
T & §5F &
’ \0 (zv
2 IS
& &
Locks have a cost —
significant in a fast microkernel!
17 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UN§W

B

@ =4 Multicore Design: Clustered Multikernel

Virtu- Virtu- Virtu- Virtu- Virtu- Virtu- Virtu- Virtu-
al al al al al al al al
CPU CPU CPU CPU CPU CPU CPU CPU

Core

HW
context

L1 cache L1 cache

L2/L3 cache L2/L3 cache

=
18 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UN§W

B

@214 Big-Lock Scalabilit

Cycles between
system calls

Speedup

Size of
cluster
19 COMP9242 S2/2016 W

=
6 Gernot Heiser. Distributed under CC Attribution License uNsW

[

Hardware Faults

NSW

=
20 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License u AAAAAAA
[T

How About Hardware Faults?

» Single-event upset: Random (transient) bit-flips due to cosmic rays,
natural radioactivity

* May break “proved” isolation

AAAAAAAAA

21 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License . UNSW

B

Redundant Execution
Secure Secure
Component Component

selL4 selL4

Idea fault-tolerance through redundancy
+ Compare & vote at kernel entry/exit
* Work in progress (Yanyan's PhD)

=
22 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License E UNSW

AAAAAAA

Side Channels

23 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License . UNSW

nnnnnnn
[

Side Channel Attacks

Information

leakage through

VM, shared hardware,
e.g. caches

Attacker
0s

Hypervisor

Hardware

N

=
24 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License LJNSW
[T

AAAAAAA

Types of Side Channels

Storage Channels Timing Channels
* Use some shared state * Observe timing of events
» Could be inside the OS/ + Eg memory access latency
hypervisor — Senses victim’s cache
— Eg existence of a file footprint

— Eg accessibility of an object

How about

.) timing
selL4: The world’s e ®

. ?
only OS proved free of s

storage channels!

| = |
25 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

B

Timing Side-Channel Attack in Public Cloud

High Low
(Victim) ? (Attacker) 5

oo

(L1 Cache) (L1 Cache)

[L2 Cache } { L2 Cache }

k /f Side Channel

L3 Cache Q}

=
26 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License E UN§W

Analysing Memory Access Latency

D oo
v 5

»
» 9 o)
0 @ c @2
58 © -2
c & O E
(@]

Time slots

=
27 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License uNsW

[

Mitigation: Partition Cache (Colouring)

High Low -
(Victim) ? (Attacker) 5

oo

(L1 Cache) (L1 Cache)

[L2 Cache } { L2 Cache }

k /f Side Channel

c Jc 3

=
28 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License LJNSW

[t

@214 Colouring the System is Easy

System permanently
coloured

Partitions
restricted to
coloured memory

1 GR
RAM =4 M
1+D [+D

29 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AAAAAAAAA
[

o ‘4 Analysing Memory Access Latency
Coloured System

3500

3000

2500

"2000

Cache
misses

1500

Cache sets

1000

o
o 200 00 00 a0 1000

=
30 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AAAAAAAAA
B

Timing Channel Through Kernel

High (Trojan)

int count = 0;
for(;;){
wait_for_new_system_tick();
if ((count %13) < 5)
syscall(...);
count++;

}

Low (Spy)
for(t=0;t<100; t++){

wait_for_new_system_tick();
for (i = 0; i < prob_sets; i++)
result[t][i] =
cache_probe(i)

}

Covert Channel

{

J

Cache Covert Channel Through Kernel
Spy observations

Misses on sets
used by kernel
for trojan syscalls

-I 16

14
(7]
12 o
3
2 60 10 =

9
(= feo
40
[
: o
s O
20
2.
0 — 0
0 5 10 15 20 25 30
Cache sets
probed
=
32 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License USNSW
[

@214 Colouring the Kernel

Only shared kernel data:
 Scheduler queue array & bitmap
Each partition

* Pointers to current: thread, kernel, has own kermnel
page table, cap space, FPU state image

RAM M

33 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AAAAAAAAA
e

@4 Timing Channel Through Kernel

High (Trojan) Low (Spy)
int count = 0;
for(; ;) { for(t=0;t<100; t++){
wait_for_new_system_tick(); wait_for_new_system_tick();
if ((count %13) < 5) for (i = 0; i < prob_sets; i++)
syscall(...); result[t][i] =
count++; cache_probe(i)
1 1
g M
High Kernel \ o\ | [Low® el J

Ll

AAAAAAAAA
B

=
34 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

o 14 Cache Covert Channel Through Kernel
Spy observations with coloured kernel

Only self-conflict
missess,
no time signal!

16
F
14
12 g
10 &
g “60 s H é
3] g
= o
40
Q
) ©
s O
20
2.
0 — o0
0 10 20 30 40 50 60
Cache sets
probed

AAAAAA

Tackling Verification Cost

AAAAAA

q 1 Verification Cost Breakdown

Haskell design 2 py J
C implementation 2 months
Debugging/Testing 2 months / [
Abstract spec refinement 8 py = /
Executable spec refinement | 3py

@ Fastpath verification 5 mont% J
Formal frameworks 9 py \
Total 24 py [
Repeat (estimated) 6 py ~
Traditional engineering 4-6 py]

.........

1 Why So Hard for 9,000 LOC?

selL4 call
graph

AAAAAAAAA

q 1 Cost of Assurance

1 py
4 months

0 py
By construction
S

2 py, 1.5 years ‘
Mostly for tools " ~
-~

0\
2 py, 1 year

Mostly for tools _
N —_—

Estimate repeat
J cost: $200/LOC

Microkernel Life-Cycle Cost in Context

selL4)

ﬂ 2| |2
°
(] I
Green Hills
Integrity
8 Fast! $1000
a Slow!
[} P
< L4
Pistachio
$100
| | | | | >
100 250 500 750 1000
Cost ($/SLOC)

=
40 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AAAAAAAAA
[

Cost of Assurance

Industry Best Practice:
« “High assurance”: $1,000/LOC, no guarantees,
« Low assurance: $100-200/LOC, 1-5 faults/kLOC,

State of the Art — selL4:

— $400/LOC, 0 faults/kLOC,
» Estimate repeat would cost half

— that’s about twice the development cost of the predecessor Pistachio!
+ Aggressive optimisation [APSys’12]

— much faster than traditional high-assurance kernels

— as fast as best-performing low-assurance kernels

=
41 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AAAAAAAAA
B

What Have We Learnt?

Formal verification didn’t produce a more kernel

* Inreality, traditional separation kernels are secure
But:

* We now have certainty

« Wedidit at less cost

Real achievement:

+ Cost-competitive at a scale where traditional approaches still work

» Foundation for scaling beyond: 2 x cheaper, 10 x bigger!

How?
+ Combine theorem proving with
— synthesis
— domain-specific languages (DSLs)

A

sssss

Our approach

« Cogent: code and proof co-generation
- Implement FS in high-level functional language (and reason
about it)
- Generate efficient low-level code in C
- Automatically prove correspondence between the two

=
43 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License LJNSW

nnnnnnn
[

Cogent Workflow

« Cogent: purely functional memory-safe language

r-----

|

P
I COGENT high-level
I : /[) e
‘ - - - mm wl \'5@
&
&
COGENT compiler -
generate

ADT generated import C code
library C code semantics

Isabelle/HOL
J/

N

=
44 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License u
[

NSW

AAAAAAA

Cogent workflow

« Cogent's certifying compiler generates an C implementation

COGENT high-level
@
&
el
COGENT compiler S
generate

In-kernel file system,

no language run-time and

Cogent workflow

« Cogent generates a specification and a proof that links it to the C

ADT generated
library C code

=
45 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW
[

AUSTRALIA

no garbage collector

code
r L _ L _N N] -I
COGENT high-level
H specification I proofs }
Qe"&@ I I
& 1 |
COGENT compiler ¥ - |
generate I I
| |
import I I
ADT generated u C code I
library C code | semantics
| I saveliemoL

46 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License @ TRl §. v

[t

Cogent workflow

« Prove high-level properties about Cogent-generated
specifications using a proof assistant

(----------ﬂ

1
COGENT high-level I
*{ specmcatlon proofs } |
2}0 I —— |
<
o
COGENT compiler -
generate
import

ADT generated
library C code

47 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License

C code
semantics

Isabelle/HOL

Cogent File Systems

* We implemented two Linux FSs:
- Ext2: functionally complete original spec
- No ACLs, symlinks VFS
- BilbyFs: custom flash file system

Py
* Invoked from VFS via a small C wrapper, which: C wrapper
- Uses a global lock to prevent concurrent Cogent FS
execution of FS operations 1
- Handles VFS caches <t ?
_ ; orage
Calls Cogent FS entry points Device

* FSs interface with the storage device via external
ADT functions

48 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License

Evaluation

* Compare ext2 with Linux's native implementation
- Hardware:
e 4 corei7-6700 running at 3.1 GHz,
o Samsung HD501JL 7200RPM 500G SATA disk

* Compare BilbyFs with handwritten C implementation
- Hardware:
« Mirabox development board
« Marvell Armada 370 single-core 1.2 GHz ARMv7
processor
« 1 GiB of NAND flash

=
49 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

.........
[

I0Zone random 4k writes

@ 600 -
g T C BilbyFs ——+—
= Cogent BilbyFs +--x--=
2
g 80
9 60 Linux ext2 s
° Cogent ext2 +-- -
£ 40

20 i -.-.-.-..;-\-“."....-l.

0 --m-. : I I |

64 256 1024 2096

File size (KiB)

* 20% CPU load for Cogent BilbyFs vs 15% for C
* Both ext2 implementations have the same CPU load

AAAAAAA

Postmark on RAM-disk

Total time creation read rate
System sec files/sec kB/sec
Cext2 10 5025 248
COGENT ext2 21 2393 118
C BilbyFs 6 33375 431
COGENT BilbyFs 10 20025 259

* Degradation of a factor 2 for Cogent FSs

=
51 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AAAAAAAAA
[

Postmark on RAM-disk

Total time creation read rate
System sec files/sec kB/sec
Cext2 10 5025 248
COGENT ext2 21 2393 118
C BilbyFs 6 33375 431
COGENT BilbyFs 10 20025 259

* Degradation of a factor 2 for Cogent FSs

* Overhead is due to two reasons:
- extra copying involved when converting in-buffer directory
entries into Cogent's internal data type
- Cogent compiler is overly reliant on C compiler's optimiser to
convert automatically C structs passed by copy to pointers

AAAAAAA

=
52 COMP9242 S2/2016 W12 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

[

@214 Remember: Verification Cost Breakdown
Abstract

Executable
Spec

Cogent spec
higher level than
selL4 exec spec

Fully automated
in Cogent

C Imple-
mentation

