
COMP9242 Advanced OS
S2/2016 W10: Operating System Security
@GernotHeiser
Incorporating Material from Toby Murray

2 © 2016 Gernot Heiser. Distributed under CC Attribution License

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:

–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2016 W10

Copyright Notice

3 © 2016 Gernot Heiser. Distributed under CC Attribution License

Different things to different people:

What is security?

On June 8, as the investigation into the initial intrusion
proceeded, the response team shared with relevant
agencies that there was a high degree of confidence that
OPM systems containing information related to the
background investigations of current, former, and
prospective Federal government employees, and those for
whom a Federal background investigation was conducted,
may have been compromised.

COMP9242 S2/2016 W10

4 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Protecting my interests that are under computer control from malign
threats

•  Inherently subjective
–  Different people have different interests
–  Different people face different threats

•  Don’t expect one-size-fits-all solutions
–  Grandma doesn’t need an air gap
–  Windows alone is insufficient for protecting TOP SECRET (TS)

classified data on an Internet-connected machine

Claiming system “security” only makes sense with respect to well-
defined security objectives:
•  Identify threats
•  Identify set of secure system states

Computer Security

COMP9242 S2/2016 W10

5 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Traditionally:
–  Has not kept pace with evolving user demographics

o  Focused on e.g. Defence and Enterprise
–  Has not kept pace with evolving threats

o  Focused on protecting users from users, not apps they run
•  Is getting better

–  Eg smartphone OSes implement stricter security than desktops
–  But is hindered because:

o  OSes are still getting larger and more complex
o  Too few people understand how to write secure code

State of OS Security

COMP9242 S2/2016 W10

6 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  What is the role of the OS for security?
•  Minimum:

–  provide mechanisms to allow the construction of secure systems
–  that are capable of securely implementing the intended users’/

administrators’ policies
–  while ensuring these mechanisms cannot be subverted

OS Security

COMP9242 S2/2016 W10

7 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Are widely applicable
•  Support general security principles
•  Are easy to use correctly and securely
•  Do not hinder non-security priorities (e.g. productivity, generativity)

–  Principle of “do not pay for what you don’t need”
•  Lend themselves to correct implementation and verification

Good security mechanisms

COMP9242 S2/2016 W10

8 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Saltzer & Schroeder [SOSP ’73, CACM ’74]
–  Economy of mechanism – KISS
–  Fail-safe defaults – as in good engineering
–  Complete mediation – check everything
–  Open design – not security by obscurity
–  Separation of privilege – defence in depth
–  Least privilege – aka principle of least authority (POLA)
–  Least common mechanism – minimise sharing
–  Psychological acceptability – if it’s hard to use it won’t be

Security Design Principles

COMP9242 S2/2016 W10

9 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Access Control Systems
–  control what each process can access

•  Authentication Systems
–  confirm the identity on whose behalf a process is running

•  Logging
–  for audit, detection, forensics and recovery

•  Filesystem Encryption
•  Credential Management
•  Automatic Updates

Common OS Security Mechanisms

COMP9242 S2/2016 W10

10 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Define what should be protected
–  and from whom

•  Often in terms of common security goals (CIA properties):
–  Confidentiality

o  X should not be learnt by Y
–  Integrity

o  X should not be tampered with by Y
–  Availability

o  X should not be made unavailable to Z by Y

Security Policies

COMP9242 S2/2016 W10

11 © 2016 Gernot Heiser. Distributed under CC Attribution License

 Security

Security vs Safety

 Safety
Availability

Timeliness Confidentiality
Integrity

Isolation!

COMP9242 S2/2016 W10

12 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Policies accompany mechanisms:
–  access control policy

o  who can access what?
–  authentication policy

o  is password sufficient to authenticate TS access?
•  Policy often restricts the applicable mechanisms
•  One person’s policy is another’s mechanism

Policy vs. Mechanism

COMP9242 S2/2016 W10

13 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  All policies and mechanisms operate under certain assumptions
–  e.g. TS cleared users can be trusted not to write TS data into the

UNCLASS window
•  Problem: implicit or poorly understood assumptions
•  Good assumptions:

–  clearly identified
–  verifiable

Assumptions

COMP9242 S2/2016 W10

14 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Comes down to risk management
–  At the heart of all security
–  Assumptions: risks we are willing to tolerate

•  Other risks:
–  we mitigate (using security mechanisms)
–  or transfer (e.g. by buying insurance)

•  Security policy should distinguish which is appropriate for each risk
–  Based on a thorough risk assessment

Risk Management

COMP9242 S2/2016 W10

15 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Systems always have trusted entites
–  whose misbehaviour can cause insecurity
–  hardware, OS, sysadmin ...

•  Trusted Computing Base (TCB):
–  the set of all such entities

•  Secure systems require trustworthy TCBs
–  achieved through assurance and verification
–  shows that the TCB is unlikely to misbehave
–  Minimising the TCB is key for ensuring correct behaviour

Trust

COMP9242 S2/2016 W10

16 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Assurance:
–  systematic evaluation and testing

•  Formal verification:
–  mathematical proof

•  Together trying to establish correctness of:
–  the design of the mechanisms
–  and their implementation

•  Certification: independent examination confirming that the
assurance or verification was done right

Assurance and Formal Verification

COMP9242 S2/2016 W10

17 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Information flow not controlled by security mechanisms
–  Confidentiality requires absence of all such

•  Storage Channel:
–  Attribute of shared resource used as channel
–  Controllable by access control

•  Timing Channel:
–  Temporal order of shared resource accesses
–  Outside of access control system
–  Much more difficult to control and analyse

•  Other physical channels:
–  Power draw
–  Temperature (fan speed)
–  Electromagnetic emanation
–  Acoustic emanation

Covert Channels

COMP9242 S2/2016 W10

18 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Created by shared resource whose timing-related behaviour can be
monitored
–  network bandwidth, CPU load ...

•  Requires access to a time source
–  anything that allows processes to synchronise
–  Generally compare relative occurrence of two event sequences (clocks)

•  Critical issue is channel bandwidth
–  low bandwidth limits damage

o  why DRM ignores low bandwidth channels
–  beware of amplification

o  e.g. leaking passwords, encryption keys etc.

Covert Timing Channels

COMP9242 S2/2016 W10

19 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W10

Covert Channels vs Side Channels

Victim Attacker Attacker Trojan

•  Attacker uses signal
created by victim’s
innocent operations

•  Much lower bandwidth

•  Trojan intentionally
creates signal through
targeted resource use

•  Worst-case bandwidth

20 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Security is very subjective, needs well-defined objectives
•  OS security:

–  provide good security mechanisms
–  that support users’ policies

•  Security depends on establishing trustworthiness of trusted entities
–  TCB: set of all such entities

o  should be as small as possible
–  Main approaches: assurance and verification

•  The OS is necessarily part of the TCB

Summary: Introduction

COMP9242 S2/2016 W10

21 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W10

ACCESS-CONTROL
PRINCIPLES

22 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  who can access what in which ways
–  the “who” are called subjects

o  e.g. users, processes etc.
–  the “what” are called objects

o  e.g. individual files, sockets, processes etc.
o  includes all subjects

–  the “ways” are called permissions
o  e.g. read, write, execute etc.
o  are usually specific to each kind of object
o  include those meta-permissions that allow modification of the

protection state
§  e.g. own

Access Control

COMP9242 S2/2016 W10

23 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  AC Policy
–  Specifies allowed accesses
–  And how these can change over time

•  AC Mechanism
–  Implements the policy

•  Certain mechanisms lend themselves to certain kinds of policies
–  Some policies cannot be expressed using your OS’s mechanisms

AC Mechanisms and Policies

COMP9242 S2/2016 W10

24 © 2016 Gernot Heiser. Distributed under CC Attribution License

Access control matrix defines the protection state at particular time

Note: All subjects are also objects!

Protection State

Obj1 Obj2 Obj3 Subj2

Subj1 R RW send

Subj2 RX control

Subj3 RW
RWX
own

recv

COMP9242 S2/2016 W10

25 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Not usually as access control matrix
–  too sparse, inefficient, dynamic

•  Two obvious choices:
–  store individual columns with each object

o  defines the subjects that can access each object
o  each such column is called the object’s access control list

–  store individual rows with each subject
o  defines the objects each subject can access

aka subject’s protection domain
o  each such row is called the subject’s capability list

Storing Protection State

COMP9242 S2/2016 W10

26 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Subjects usually aggregated into classes
–  e.g. UNIX: owner, group, everyone
–  more general lists in Windows
–  Can have negative rights

eg. to overwrite group rights
•  Meta-permissions (e.g. own)

–  control class membership
–  allow modifying the ACL

•  Implemented in almost all commercial OSes

Access Control Lists (ACLs)

Subj1 R

Subj2

Subj3 RW

Obj1

COMP9242 S2/2016 W10

27 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  A capability [Dennis & Van Horn, 1966] is a capability list element

–  Names an object to which the capability refers
–  Confers permissions over that object

•  Capability is prima facie authority to perform an operation
–  System will perform operation iff appropriate capability is presented

•  Less common in commercial systems
–  IBM System→38-AS/400→i-Series
–  KeyKOS (Visa transaction processing) [Bromberger et al, 1992]
–  More common in research: EROS, Cheri, seL4

Capabilities

Obj1 Obj2 Obj3 Subj2

R RW send
Subj1

COMP9242 S2/2016 W10

28 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Capabilities must be unforgeable
–  Traditionally protected by hardware (tagged memory)
–  Can be copied etc like data

•  On conventional hardware, either:
–  Stored as ordinary user-level data, but unguessable due to sparseness

o  contains password or secure hash
–  Stored separately (in-kernel), referred to by user programs by index/

address
o  “partitioned” or “segregated” capabilities
o  like UNIX file descriptors

•  Sparse capabilities can be leaked more easily
–  Huge amplification of covert channels!

•  The only solution for most distributed systems

Capabilities: Implementations

COMP9242 S2/2016 W10

29 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  In theory:
–  Dual representations of access control matrix

•  Practical differences:
–  Naming and namespaces

o  Ambient authority
o  Deputies

–  Evolution of protection state
–  Forking
–  Auditing of protection state

ACLs and Capabilities: Duals?

COMP9242 S2/2016 W10

30 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  ACLs:
–  objects referenced by name

o  e.g. open(“/etc/passwd”,O_RDONLY)
–  require a subject (class) namespace

o  e.g. UNIX users and groups
•  Capabilities:

–  objects referenced by capability
–  no further namespace required

Duals: Naming and Namespaces

COMP9242 S2/2016 W10

31 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  ACLs: separation of object naming and permission can lead to
confused deputies

•  Problem is dependence on ambient authority

–  Deputy uses its own authority when performing action on behalf of client
•  Capabilities are both names and permissions

–  You can’t name something without having permission to it
–  Presentation is normally explicit (not ambient)

Duals: Confused Deputies

gcc
RW

LogFile Alice
X

exec “gcc” “-o LogFile” “source.c”

COMP9242 S2/2016 W10

Subject
Deputy

Unsolvable
with ACLs!

32 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  ACLs:
–  Protection state changes by modifying ACLs

o  Requires certain meta-permissions on the ACL
•  Capabilities:

–  Protection state changes by delegating and revoking capabilities
–  Fundamental properties enable reasoning about information flow:

o  A can send message to B only if A holds cap to B
o  A can obtain access to C only if it receives message with cap to C

–  Right to delegate may also be controlled by capabilities
o  e.g. A can delegate to B only if A has a capability to B that carries

appropriate permissions
o  A can delegate X to B only if it has grant authority on X

COMP9242 S2/2016 W10

Duals: Evolution of Protection State

33 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  What permissions should children get?
•  ACLs: depends on the child’s subject

–  UNIX etc.: child inherits parent’s subject
o  Inherits all of the parent’s permissions
o  Any program you run inherits all of your authority

–  Bad for least privilege
•  Capabilities: child has no caps by default

–  Parent gets a capability to the child upon fork
–  Used to delegate explicitly the necessary authority
–  Defaults to least privilege

Duals: Forking

COMP9242 S2/2016 W10

34 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Who has permission to access a particular object (right now)?
–  ACLs: Just look at the ACL
–  Caps: hard to determine with sparse or tagged caps, or for partitioned

•  What objects a can particular subject access (right now)?
–  Capabilities: Just look at its capabilities
–  ACLs: may be impossible to determine without full scan

•  “Who can access my stuff?” vs. “How much damage can X do?”

Duals: Auditing of Protection State

COMP9242 S2/2016 W10

35 © 2016 Gernot Heiser. Distributed under CC Attribution License

Caps are opaque object references (pure names)
•  Holder cannot tell which object a cap references nor the authority
•  Supports transparent interposition (virtualisation)

COMP9242 S2/2016 W10

Interposing Object Access

A
B

invoke

ref B

“B”

ref B ref “B”

Usage:
•  API virtualisation
•  Security monitor

–  Security policy enforcement
–  Info flow tracing
–  Packet filtering…

•  Secure logging
•  Debugging
•  Lazy object creation

–  Initial cap to constructor
–  Replace by proper object cap

Nice
student
project!

36 © 2016 Gernot Heiser. Distributed under CC Attribution License

Security Principle ACLs Capabilities
Economy of Mechanism Dubious Yes!
Fail-safe defaults Generally not Yes!
Complete mediation Yes (if properly done) Yes (if properly done)
Open design Neutral Neutral
Separation of privilege No Doable
Least privilege No Yes
Least common mechanism No Yes
Psychological acceptability Neutral Neutral

COMP9242 S2/2016 W10

Duals: Saltzer & Schroeder Principles

37 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Discretionary Access Control:
–  Users can make access control decisions

o  delegate their access to other users etc.
•  Mandatory Access Control (MAC):

–  enforcement of administrator-defined policy
–  users cannot make access control decisions (except those allowed by

mandatory policy)
–  can prevent untrusted applications running with user’s privileges from

causing damage

Mandatory vs. Discretionary AC

COMP9242 S2/2016 W10

38 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Common in areas with global security requirements
–  e.g. national security classifications

•  Less useful for general-purpose settings:
–  hard to support different kinds of policies
–  all policy changes must go through sysadmin
–  hard to dynamically delegate only specific rights required at runtime

MAC

COMP9242 S2/2016 W10

39 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  MAC Policy/Mechanism
–  Formalises National Security Classifications

•  Every object assigned a classification
–  e.g. TS, S, C, U
–  may also have orthogonal security compartments

o  Support need-to-know
•  Classifications ordered in a lattice

–  e.g. TS > S > C > U
•  Every subject assigned a clearance

–  Highest classification they’re allowed to learn

Bell-LaPadula [1966] (BLP) Model

COMP9242 S2/2016 W10

UNCLASS

CONF

S

TS

40 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Simple Security Property (“no read up”):
–  s can read o iff clearance(s) >= class(o)
–  S-cleared subject can read U,C,S but not TS
–  standard confidentiality

•  *-Property (“no write down”):
–  s can write o iff clearance(s) <= class(o)
–  S-cleared subject can write TS,S, but not C,U
–  to prevent accidental or malicious

 leakage of data to lower levels

BLP: Rules

COMP9242 S2/2016 W10

UNCLASS

CONF

S

TS

E.g.
logging

41 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Bell-LaPadula enforces confidentiality
•  Biba: Its dual, enforces integrity
•  Objects now carry integrity classification
•  Subjects labelled by lowest level of data

each subject is allowed to learn
•  BLP order is inverted:

–  s can read o iff clearance(s) <= class(o)
–  s can write o iff clearance(s) >= class(o)

Biba Integrity Model

COMP9242 S2/2016 W10

Low

Hi

42 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  BLP+Bibra allows no information flow across classes
–  Assume high-classified subject to treat low-integrity info responsibly
–  Allow read-down

•  Strong *-Property (“matching writes only”):
–  s can write o iff clearance(s) = class(o)
–  Eg for logging, high reads low data and logs

Confidentiality + Integrity

COMP9242 S2/2016 W10

UNCLASS

CONF

S

TS

43 © 2016 Gernot Heiser. Distributed under CC Attribution License

“On the Inability of an Unmodified Capability Machine to Enforce the *-
Property“ [Boebert 1984]
•  Shows an attack on capability systems that violates the *-property

–  Low passes cap to write buffer to High, which can then write down
–  Where caps and data are indistinguishable (sparse, tagged)
–  Does not work against partitioned capability systems

Boebert’s Attack

COMP9242 S2/2016 W10

High HiSeg
R

Low LoSeg RW
rw_l

R rw_l.write(rw_l) r_l.read() r_l RW

rw_l

44 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Not all mechanisms can support all policies
•  Many policies treat data- and access-propagation differently

–  Eg explicit grant capability (Take-grant model)
–  Cannot be expressed using sparse capability systems

•  This does not mean that capability systems and MAC are
incompatible in general

Boebert’s Attack: Lessons

COMP9242 S2/2016 W10

45 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Boebert’s attack highlights the need for decideability of safety in an
AC system

•  Safety Problem: given an initial protection state s, and a possible
future protection state s’, can s’ be reached from s?
–  i.e. can an arbitrary (unwanted) access propagation occur?

•  Harrison, Ruzzo, Ullman [1975] (HRU):
–  undecideable in general
–  equivalent to the halting problem

Decideability

COMP9242 S2/2016 W10

46 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  The safety problem for an AC system is decideable if we can
always answer this question mechanically

•  Most capability-based AC systems decideable:
–  instances of Lipton-Snyder Take-Grant access control model [1977]
–  Take-Grant is decideable in linear time

•  Less clear for many common ACL systems

Decideable AC systems

COMP9242 S2/2016 W10

47 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  ACLs and Capabilities:
–  Capabilities tend to better support least privilege
–  But ACLs can be better for auditing

•  MAC good for global security requirements
•  Certain kinds of policies cannot be enforced with certain kinds of

mechanisms
–  e.g. *-property with sparse capabilities

•  AC systems should be decideable
–  so we can reason about them

Summary: AC Principles

COMP9242 S2/2016 W10

48 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W10

ACCESS CONTROL
PRACTICE

49 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  NSA-developed MAC for Linux
–  Based on Flask [Spencer & al., 1999]

•  Designed to protect systems from buggy applications
–  Especially daemons and servers that have traditionally run with

superuser privileges
•  Adds a layer of MAC atop Linux’s traditional DAC

–  Each access check must pass both the normal DAC checks and the
new MAC ones

•  Used widely in e.g. Enterprise linux

Case Study: SELinux

COMP9242 S2/2016 W10

50 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Domain-Type Enforcement:
–  Each process labelled with a domain
–  Each object labelled with a type
–  Central policy describes allowed accesses from domains to types

•  Example:
–  named runs in named_d domain; /sbin labelled with sbin_t type
–  “allow named_d sbin_t:dir search”
–  Domain assignment for new processes on exec()

o  based on exec’ing domain and exec’d file type
o  “type_transition initrc_d squid_exec_t:process squid_d”

–  Type assignment to new files/directories
o  based on domain of creator process and type of parent directory
o  “type_transition named_t var_run_t:sock_file
named_var_run_t”

SELinux: Policy

COMP9242 S2/2016 W10

51 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Static fine-grained MAC
•  Monolithic policy of high complexity

o  “The simpler targeted policy consists of more than 20,000
concatenated lines ... derived from ... thousands of lines of TE rules
and file context settings, all interacting in very complex ways.”
§  Red Hat Enterprise Linux 4: Red Hat SELinux Guide, Chapter

6. Tools for Manipulating and Analyzing SELinux
•  Limited flexibility

–  What authority should we grant a text editor?
o  Needed authority determined only by user actions

SELinux

COMP9242 S2/2016 W10

52 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  “Practical Capabilities for UNIX” [Watson et al., 2010]
•  Designed to support least privilege in conventional systems

–  without downsides of MAC
–  through delegation

•  Merged into FreeBSD 9

Case Study: Capsicum

COMP9242 S2/2016 W10

53 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Capsicum adds to the FreeBSD kernel:
–  Capabilities with fine-grained access rights for standard objects (files,

processes etc.)
–  Capability Mode

o  Disallows access to global namespaces (e.g. filesystem etc.)
o  All accesses must go through capabilities
o  *at() system calls can resolve only names “underneath” the passed

descriptor
o  Allows access to subsets of the filesystem by directory capabilities

Capsicum: Kernel

COMP9242 S2/2016 W10

54 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  New file descriptor type
–  Wrap traditional file descriptors
–  Carry fine-grained access rights

FreeBSD Capsicum: Capabilities

COMP9242 S2/2016 W10

55 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Capability passing as for file descriptors:
–  may be inherited across fork()
–  passed via UNIX domain sockets

•  Created using cap_new()
–  From a raw file descriptor and a set of rights
–  Or an existing capability

o  New cap’s rights must be a subset
•  Capabilities may refer to files, directories, processes, network

sockets etc.

FreeBSD Capsicum: Capabilities

COMP9242 S2/2016 W10

56 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Entered via new syscall: cap_enter()
–  Sets a flag that all child processes then inherit and can never be cleared

once set
•  Disallows access to all global namespaces:

–  Process ID (PID), file paths, protocol addresses (e.g. IP addrs), system
clocks etc.
o  e.g. open() syscall disallowed (but openat() OK)

–  All accesses through delegated capabilities
o  Removes all ambient authority

FreeBSD Capsicum: Capability Mode

COMP9242 S2/2016 W10

57 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Allow lookups of paths relative to a given directory
–  specified by a directory file descriptor
–  e.g. openat(rootdirfd,”somepath”, O_RDONLY)

•  In capability mode, prevented from traversing any path above the
given cap
–  e.g. openat(dirfd,”../blah”, flags) disallowed
–  Ensures that directory caps do not confer authority to access their

parents

FreeBSD Capsicum: *at() syscalls

COMP9242 S2/2016 W10

58 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Directory capabilities allow access to sub-parts of the filesystem
namespace

FreeBSD Capsicum: Capability Mode

COMP9242 S2/2016 W10

59 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  A parent delegates to an app it invokes by:
–  fork()ing, obtaining a cap to the child
–  child drops or weakens unneeded caps, calls cap_enter(), then exec()s

invoked binary
•  Allows e.g. your shell to delegate sensibly to apps it invokes

–  Although apps need to be modified to do all accesses via capabilities
–  Provides an incremental path towards security

FreeBSD Capsicum: Delegation

COMP9242 S2/2016 W10

61 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Secure OS should support writing least-privilege applications
–  decomposing app into distinct components
–  each of which runs with least privilege

•  Largely comes down to its AC system
–  some make this far more easy than others

•  Example: web browser
–  handles lots of the user’s sensitive info
–  but processes lots of untrusted input
–  input processing parts need to be sandboxed

AC Mechanisms and Least Privilege

COMP9242 S2/2016 W10

62 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W10

Sandboxing Chromium [Watson et al., 2010]

OS Sandbox LOC FS IPC Net Priv

DAC
Windows DAC

ACLs 22,350

Linux chroot() 600

MAC
OS X Sandbox 560

Linux SELinux 200

Caps
Linux seccomp 11,300

FreeBSD Capsicum 100

63 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W10

USABLE SECURITY

64 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  “The single biggest cause of network security breaches is not
software bugs and unknown network vulnerabilities but user
stupidity, according to a survey published by computer consultancy
firm @Stake.”
–  http://www.zdnetasia.com/staff-oblivious-to-computer-security-

threats-21201228.htm
•  “if [educating users] was going to work, it would have worked by

now.”
–  http://www.ranum.com/security/computer_security/editorials/dumb/

Users and Security

COMP9242 S2/2016 W10

65 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Security advice:
–  e.g. check URLs / HTTPS certs, use strong passwords, don’t write down

passwords, etc.
•  Is regularly rejected:

–  when it makes it impossible to get work done
o  why bosses share their passwords with their PAs

–  when there is some incentive to do so
o  why users give out their passwords for chocolate

–  when nobody ever sees any threat
o  why nobody checks HTTPS certificates
o  who here has ever faced a live MITM?

Security Advice

COMP9242 S2/2016 W10

66 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Is often rational (Herley, NSPW 2009)
–  because it costs more to follow it than not to

o  advice imposes a cost on everyone
o  but only a fraction ever get attacked
o  so for most, there is not benefit

•  Is because security is secondary concern
–  people get paid (only) for getting work done

•  Writing good security advice is hard
–  this says more about poor system design than about the motivations of

end-users
•  Good example: forced regular password changes

–  Forces users to choose weak passwords ⇒ weakens security
–  Lost productivity due to change, forgotten passwords ⇒ high cost
–  Vulnerability is still months, hackers need minutes ⇒ no security gain

Security Advice Rejection

COMP9242 S2/2016 W10

Classical
security
theatre

67 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Has your bank ever reminded you not to forget your ATM card when
withdrawing cash?

A brief digression...

COMP9242 S2/2016 W10

68 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Needed when the most secure way to use a system differs from the
easiest
–  for rational users: “easiest” = “most profitable”

o  will be different for different people
•  Is expensive

–  Cheaper to avoid need for it by careful design
•  Not always possible to avoid:

–  when security and productivity goals conflict
–  e.g. need-to-know versus intelligence sharing post 9/11

User Education

COMP9242 S2/2016 W10

69 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Design Principle: Make the easiest way to use a system the most
secure
–  c.f. safe defaults

•  In general: exploit the user to make the system more, not less,
secure
–  by aligning their incentives to produce behaviour that enhances security
–  requires good understanding of economics, human behaviour,

psychology etc.
o  why these are now becoming hot topics in security research

Why Usable Security?

COMP9242 S2/2016 W10

70 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Users often behave “insecurely” because their actions cause effects
different to what they expect
–  User types password into a phishing website

o  did not expect the website was fraudulent
–  User executes email attachment

o  did not expect the attachment to be dangerous
•  General principle: secure systems must behave in accordance with

user expectations

Secure Interaction Design

COMP9242 S2/2016 W10

71 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  To behave in accordance with user expectations:
–  Software must clearly convey consequences of any security choices

presented to user
–  Software must clearly inform the user to keep accurate their mental

model that informs their choices
•  Why secure UIs require trusted paths

–  Essential security mechanism of a secure OS

User Expectations

COMP9242 S2/2016 W10

72 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Unspoofable I/O with the user
–  unspoofable output

o  so the user can believe what they see
–  unspoofable input

o  so the user knows what they say will be honoured
•  Requires trustworthy I/O hardware
•  For interactions via the OS, requires:

–  trustworthy drivers
–  trustworthy kernel

Trusted Path

COMP9242 S2/2016 W10

73 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  A trusted path for logging in
–  Ctrl-Alt-Del in Windows NT-based systems
–  Untrappable by applications, so unspoofable
–  Traps directly to kernel
–  Causes login prompt only to be displayed

•  Requires user effort
–  So not optimal
–  But better than

nothing

Secure Attention Key

COMP9242 S2/2016 W10

74 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  For high-security situations, often cannot trust kernel or device
drivers

•  These use hardware-only trusted paths
–  Simple I/O hardware directly connected to security-critical device

functions
o  e.g. pushbuttons (input) and LEDs (output)

–  bypasses OS
o  requires only that the hardware is trusted

Hardware Trusted Paths

COMP9242 S2/2016 W10

95 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Design OS security mechanisms with real users in mind
–  mechanisms that fail when users behave normally are faulty, not the

other way around
•  Mechanisms must convey accurate information to users

–  so they can make informed security decisions
•  Mechanisms should infer security decisions from normal user

actions
–  granting authority according to least privilege

Usable Security: Summary

COMP9242 S2/2016 W10

96 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W10

ASSURANCE AND
VERIFICATION

97 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Specification
–  unambiguous description of desired behaviour

•  System design
–  justification that it meets specification

o  by mathematical proof or compelling argument
•  Implementation

–  justification that it implements the design
o  by proof, code inspection, rigorous testing

•  Maintenance
–  justifies that system use meets assumptions

Assurance: Substantiating Trust

COMP9242 S2/2016 W10

98 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Common Criteria for IT Security Evaluation [ISO/IEC 15408, 99]
–  ISO standard, for general use
–  evaluates QA used to ensure systems meet their requirements
–  Developed out of the famous US DOD “Orange Book”:

Trusted Computer System Evaluation Criteria [1985]
•  Target of Evaluation (TOE) evaluated against Security Target (ST)

–  ST: statement of desired security properties based on Protection
Profiles

Common Criteria

COMP9242 S2/2016 W10

99 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  7 Evaluated Assurance Levels
–  higher levels = more thorough evaluation

o  higher cost
o  not necessarily better security

Common Criteria: EALs

Level Requirement
s

Specification Design Implementati
on

EAL1 not eval. Informal not eval. not eval.
EAL2 not eval. Informal Informal not eval.
EAL3 not eval. Informal Informal not eval.
EAL4 not eval. Informal Informal not eval.
EAL5 not eval. Semi-Formal Semi-Formal Informal
EAL6 Formal Semi-Formal Semi-Formal Informal
EAL7 Formal Formal Formal Informal

COMP9242 S2/2016 W10

EAL 1–4 “not for
use in hostile
environments”

100 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Controlled Access PP (CAPP)
–  standard OS security, up to EAL3

•  Single Level Operating System PP
–  superset of CAPP, up to EAL4+

•  Labelled Security PP
–  MAC for COTS OSes

•  Multi-Level Operating System PP
–  superset of CAPP, LSPP, up to EAL4+

•  Separation Kernel Protection Profile (SKPP)
–  strict partitioning, for EAL6-7

Common Criteria Protection Profiles (PPs)

COMP9242 S2/2016 W10

101 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  EAL3:
–  Mac OS X

•  EAL4:
–  2003: Windows 2000
–  2005: SuSE Enterprise Linux
–  2006: Solaris 10 (EAL4+)

o  against CAPP (an EAL3 PP!)
–  2007: Red Hat Linux (EAL4+)

•  EAL6
–  Green Hills INTEGRITY-178B (EAL6+)

o  against SKPP
o  relatively simple hardware platform in TOE

COMP9242 S2/2016 W10

COTS OS Certifications

Get regularly
hacked!

102 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  SKPP:
–  OS provides only separation

•  One Box One Wire (OB1) Project
–  Use INTEGRITY-178B to isolate VMs on commodity desktop hardware
–  Leverage existing INTEGRITY certification

o  by “porting” it to commodity platform
–  Conclusion [NSA, March 2010]:

o  SKPP validation for commodity hardware platforms infeasible due to
their complexity

o  SKPP has limited relevance for these platforms
–  NSA subsequently dis-endorsed SKPP

SKPP on Commodity Hardware

COMP9242 S2/2016 W10

103 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Very expensive
–  rule of thumb: EAL6+ costs $1K/LOC

•  Too much focus on development process
–  rather than the product that was delivered

•  Lower EALs of little practical use for OSes
–  c.f. COTS OS EAL4 certifications

•  Commercial Licensed Evaluation Facilities licenses rarely revoked
–  Leads to potential “race to the bottom” (Anderson & Fuloria, 2009)

Common Criteria Limitations

COMP9242 S2/2016 W10

104 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Based on mathematical model of system
•  Two approaches:

–  Automated techniques based on model checking / abstract
interpretation

–  Theorem proving (manual or partially automated)

Formal Verification

COMP9242 S2/2016 W10

105 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Algorithms that analyse code to detect certain kinds of defects
–  Usually static analysis

•  Cannot generally “prove” code is correct
–  Only certain properties
–  False positives
–  False negatives

•  Can be sound: guaranteed to detect all potential bugs of a kind
–  No false negatives

•  Relatively cheap, often highly scalable (but then typically not sound)
–  Tradeoff between completeness and cost

Automatic Analyses

COMP9242 S2/2016 W10

106 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Static analysis of Linux source [Chou & al, 2001]
–  Found high density of bugs, especially in device drivers

•  Re-analysis 10 years later [Palix & al, 2011]
–  Density of bugs detectable by static analysis had not dropped a lot!

COMP9242 S2/2016 W10

Static Analysis and Linux: A Sad Story

107 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  State desired properties as a theorem in a mathematical logic
•  Proof:

–  Model satisfies security properties
o  Required by CC EAL5-7

–  The code implements the model
o  Not required by any CC EAL (informal argument for EAL7)

•  Example: seL4 microkernel
–  2009: proof that code implements model
–  2011: proof that model enforces integrity
–  2013: proof that model enforces confidentiality
–  2013: proof that binary is correct translation of C code

Theorem Proving

COMP9242 S2/2016 W10

108 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Proofs are expensive
–  e.g. seL4 took ~12 py for ~10,000 LOC
–  … plus a lot of re-usable effort and learning
–  But:

o  Factor 2–3 less expensive than Integrity EAL6+ certification
o  Factor 2–3 more expensive than traditional low-assurance code

•  Proofs rest on assumptions
–  assume correct everything you don’t model

o  e.g. details of hardware platform, etc.
–  difficult to assume that e.g. modern x86 platform is bug free!
–  full proofs best suited for systems that run on simple hardware platform

o  e.g. embedded systems
o  otherwise they’re not yet worth the high cost

Formal Verification Limitations

COMP9242 S2/2016 W10

109 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W10

SEL4 AND SECURITY
ASSURANCE

110 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W10

A 30-Year Dream

111 © 2016 Gernot Heiser. Distributed under CC Attribution License

Assurance

COMP9242 S2/2016 W10

Common
Criteria EAL4 EAL5 EAL6 EAL7

Requirements Informal Formal Formal Formal Formal

Functional
Spec

Informal Semiformal Semiformal Formal Formal

High-Level
Design

Informal Semiformal Semiformal Formal Formal

Low-Level
Design

Informal Informal Semiformal Semiformal Formal

Code Informal Informal Informal Informal Formal

Proof Proof

Proof Proof

Proof Proof

Proof Proof

112 © 2016 Gernot Heiser. Distributed under CC Attribution License

Integrity

Abstract
Model

C Imple-
mentation

Confiden-
tiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Pr
oo

f

Functional
correctness
[SOSP’09]

Isolation
properties

[ITP’11, S&P’13]

Translation
correctness
[PLDI’13]

Exclusions (at present):
•  Initialisation
•  Privileged state & caches
•  Multicore
•  Covert timing channels

Worst-case
execution time

[RTSS’11, RTAS’16]

World’s fastest
microkernel!

Provable Security Enforcement

COMP9242 S2/2016 W10

113 © 2016 Gernot Heiser. Distributed under CC Attribution License

Proving Functional Correctness

Abstract
Model

Executable
Model

C Imple-
mentation

P
ro

of

P
ro

of
 Refinement: All

possible
implementation
behaviours are

captured by model

Refinement: All
possible

implementation
behaviours are

captured by model

117,000 lop

50,000 lop

COMP9242 S2/2016 W10

114 © 2016 Gernot Heiser. Distributed under CC Attribution License

P
ro

of

P
ro

of

Proving Functional Correctness

Abstract
Model

Executable
Model

C Imple-
mentation

COMP9242 S2/2016 W10

COMP9242 S2/2016 W10
115 |

