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Real-Time System: Definition

A real-time system is any information processing system which has
to respond to externally generated input stimuli within a finite and

specified period

» Correctness depends not only on the logical result (function) but also
the time it was delivered

» Failure to respond is as bad as delivering the wrong result!
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Types of Real-Time Systems

* Hard real-time systems

*  Weakly-hard real-time systems
* Firm real-time systems

» Soft real-time systems

» Best-effort systems

* Real-time systems typically deal with deadlines:
— Adeadline is a time instant by which a response has to be completed
— Adeadline is usually specified as relative to an event
o The relative deadline is the maximum allowable response time
o Absolute deadline: event time + relative deadline
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Hard Real-Time Systems

* Deadline miss is “catastrophic”

— safety-critical system: failure results in death, severe injury

— mission-critical system: failure results in massive financial damage
» Steep and real “cost” function

Cost Deadline
~
Triggering
Event \
1 >

Time
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Eg RT Requirements in Industrial Automation
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Real-Time # Real Fast

Car engine ignition 2.5ms Catastrophic Engine damage
Industrial robot 5 ms Recoverable? Machinery damage
Air bag 20 ms Catastrophic Injury or death
Aircraft control 50 ms Recoverable Crash

Industrial process 100 ms Recoverable Lost production, plant/

environment damage
Pacemaker 100 ms Recoverable Death

Challenge of real-time systems: Guaranteeing deadlines
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Typical Execution-Time Profile

Longest observed time

g Safe lower bound Safe upper bound
£
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Execution time

Variance may be orders of magnitude!
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Data-dependent execution path

Micro-architectural features: pipelines, caches
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Weakly-Hard Real-Time Systems

» Tolerate a (small) fraction of deadline misses
— Most feedback control systems (including life-supporting ones!)
o occasionally missed deadline can be compensated at next event
o system becomes unstable if too many deadlines are missed
— Typically integrated with other fault tolerance
o electro-magnetic interference, other hardware issues

Cost Deadline
Triggering
Event \
1 >
Time
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Firm Real-Time Systems

1"

Deadline miss makes computation obsolete
— Typical examples are forecast systems
o weather forecast
o trading systems

Cost may be loss of revenue (gain)

Gain Deadline
Triggering
Event \
1 >
Time
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Soft Real-Time Systems

» Deadline miss is undesired but tolerable
— Frequently results on quality-of-service (QoS) degradation
o eg audio, video rendering
o Steep “cost” function

» Cost of deadline miss may be abstract ff( S~
Bounded
@)
QO
Cost Deadline Cost Deadline

Triggering Time
Event
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Best-Effort Systems

* No deadlines, timeliness is not part of required operation

* Inreality, there is at least a nuisance factor to excessive duration
— response time to user input

» Again, “cost” may be reduced gain

Cost

Triggering

Event
\ >

Time
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Real-Time Operating System (RTOS)

» Designed to support real-time operation
— Fast context switches, fast interrupt handling?
— Yes, but predictable response time is more important
o “Real time is not real fast”
— Analysis of worst-case execution time (WCET)
» Support for scheduling policies appropriate for real time
» Classical RTOSes very primitive
— single-mode execution
— no memory protection
— essentially a scheduler with a threads package
— ‘“real-time executive”
inherently cooperative
* Many modern uses require actual OS technology for isolation
— generally microkernels
— QNX, Integrity, VXworks, L4 kernels
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Approaches to Real Time

Emulation on event-
driven system: treat
clock tick as event

» Clock-driven (cyclic)
Periodic scheduling
— Typical for control loops
— Fixed order of actions, round-robin execution
Statically determined (static schedule) if periods are fixed

o need to know all execution parameters at system configuration time

Emulation on clock-
driven system: buffer
event (IRQ) until timer tick
+ Event-driven

— Sporadic scheduling

— Typical for reactive systems (sensors & actuators)
— Static or dynamic schedules

— Analysis requires bounds on event arrivals
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Real-Time System Operation

» Time-triggered
— Pre-defined temporal relation of events
— eventis not serviced until its defined release time has arrived

» Event-triggered
— timer interrupt
— asynchronous events

» Rate-based
— activities get assigned CPU shares (“rates”)
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Real-Time Task Model

+ Job: unit of work to be executed
— ... resulting from an event or time trigger

* Task: set of related jobs which provide some system function
— Ataskis a sequence of jobs (typically executing same function)
— Job i+1 of of a task cannot start until job i is completed/aborted

» Periodic tasks
— Time-driven and all relevant characteristics known a priori
o Task t characterized by period T;, deadline, D; and execution time C;
o Applies to all jobs of task
» Aperiodic tasks
— Event driven, characteristics are not known a priori
o Task t characterized by period T; deadline D, and arrival distribution
» Sporadic tasks
— Aperiodic but with known minimum inter-arrival time T;
— treated similarly to periodic task with period T,
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Standard Task Model

C: Worst-case computation time (WCET)
T: Period (periodic) or minimum inter-arrival time (sporadic)
D: Deadline (relative, frequently “implicit deadlines” D=T)
J: Release jitter
P: Priority: higher number means higher priority
B: Worst-case blocking time
R: Worst-case response time
OS terminology:
U: Utilisation; U=C/T el
* “job” = event-based
D activation of thread
= Release
C Time
. e '
J
¢ T > Time
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Task Constraints

» Deadline constraint: must complete before deadline
* Resource constraints:
Shared (R/O), exclusive (W-X) access
— Energy
Precedence constraints:

t; = t,: t, execution cannot start until t, is finished
Fault-tolerance requirements

o eg redundancy

» Scheduler’s job to ensure that constraints are met!

19 COMP9242 S2/2016 W08 © 2016 Gernot Heiser. Distributed under CC Attribution License

Scheduling

* Preemptive vs non-preemptive
» Static (fixed, off-line) vs dynamic (on-line)
» Clock-driven vs priority-based
— clock-driven is static, only works for very simple systems
— priorities can be static (pre-computed and fixed) or dynamic

— dynamic priority adjustment can be at task-level (each job has fixed
prio) or job-level (jobs change prios)
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Clock-Driven (Time-Triggered) Scheduling

» Typically implemented as time “frames” while (true) {
adding up to “base rate” wait_tick();
+ Advantages Job_103
s wait_tick();
— fully deterministic job_20);
— “cyclic executive” is trivial wait_tick();
— minimal overhead job_10);
» Disadvantage: wait_tick();
— Big latencies if event rate doesn’t match Jjob_30);
base rate (hyper-period) wait_tick();
— Inflexible Jjob_40);

}

< >

Hyper-period

.........
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Synchronous Distributed RT Systems

Can treat like single system if clocks synchronised?

Sensor H HC ey » Issue clock drift: can only synchronise within
certain accuracy
Sensor H UC
E— Flight Time-triggered architecture
Actuator '4— PC e Computer Idea: use sparse time:
——— * Restrict events to
Actuator »4- HC active interval @

» Separated by silence interval A

* A allows for clock drift and
communications time

0 1 2 3 4 5 6 7 8 9
A A T AR AR AR TR AR

T A T A T Courtesy Hermann Kopetz
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Non-Preemptive Scheduling

* Minimises context-switching overhead
— Significant cost on modern processors (pipelinies, caches)
» Easy to analyse timeliness
+ Drawbacks:
— Larger response times for “important” tasks
— Reduced utilisation, schedulability
o In many cases cannot produce schedule despite plenty idle time
— Can't re-use slack (eg for best-effort)
* Only used in very simple systems
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Fixed-Priority Scheduling (FPS)

» Real-time priorities are absolute:
— Scheduler always picks highest-priority job
» Obviously easy to implement, low overhead
» Drawbacks: inflexible, sub-optimal
— Cannot schedule some systems which are schedulable preemptively

» Note: “Fixed” in the sense that system doesn’t change them
— OS may support dynamic adjustment
— Requires on-the-fly (re-)admission control
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Rate-Monotonic Scheduling (RMS)

* RMS: Standard approach to fixed priority assignment
- T<T,=P>P,
— 1/T is the “rate” of a task

* RMS is optimal for fixed priorities

Schedulability test: RMS can schedule n tasks with D=T if
U=y C/T,;<n2"-1); lim,_.U=log2

U[%] 100 82.8 78.0 75.7 743 71.8 69.3

Rate-Monotonic Scheduling (RMS)

RMS schedulability condition is sufficient but not necessary

T D P CuUM hj’j"jj? $
t;, 20 20 3 10 50 T 1

t, 40 40 2 10 25
t, 80 80 2 20 25 ] t

4
1
00 blocked n preempted q

I R A R

» If D<T replace by deadline-monotonic scheduling (DMS):
- Di<D; = P>P,
» DMS is also optimal (but schedulability bound is more complex)
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FPS Example Earliest Deadline First (EDF)
t, l | I | | | i | | « Dynamic scheduling policy
P . P P ; + Job with closest deadline executes
t, | I ' F ] | P ' ; | + Preemptive EDF with D=T is opfimal: n jobs can be scheduled iff
Usy C/T <1
t, T | i | o necessary and sufficient condition
o no easy test if DT
L T o8 o 0 N[ o W o0 o 050 afsg
Release Deadline
t; 3 5 20 20 25 5
t, 2 8 30 20 27 12
t, 1 15 50 50 30 0
82
27 COMP9242 S2/2016 W08 © 2016 Gernot Heiser. Distributed under CC Attribution License UN§W 28 COMP9242 S2/2016 W08 © 2016 Gernot Heiser. Distributed under CC Attribution License USNSW




FPS vs EDF
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FPS vs EDF

P C T D U[% release
t, 3 5 20 20 25 5

t, 2 8 30 20 27 12
t, 1 15 40 40 37.5 0
89.5
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FPS vs EDF Overload: FPS
o S
, | " I I : |¥ ' t, | | | | | | old
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EDF
schedules
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Overload: FPS
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Overload: FPS vs EDF

o m e m

(I I IO IO IO ERU AU O B

AAAAAAA

Overload: EDF

m (miml .
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Overload: FPS vs EDF

On overload, (by definition!) lowest-prio jobs miss deadlines

* Result is well-defined and -understood for FPS
— Treats highest-prio task as “most important”
— ... but that may not always be appropriate!
— Under transient overload may miss deadlines of higher-priority tasks

* Result is unpredictable (seemingly random) for EDF
May result in all tasks missing deadlines!

— Under constant overload will scale back all tasks

No concept of task “importance”

— “EDF behaves badly under overload”

Main reason EDF is unpopular in industry
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Why Have Overload?

» Faults (software, EMI, hardware)
* Incorrect assumptions about environment

*  Optimistic WCET
— Computing WCET of non-trivial programs is hard, often infeasible!
— Safe WCET bounds tend to be highly pessimistic (orders of magnitude!)
— WCET often very unlikely and orders of magnitude worse than “normal”

o Estimation inaccuracies from caches, pipelines, under-specified
hardware...

o “notrmal” vs “exceptional” operating conditions
o requires massive over-provisioning

— Some systems have effectively unbounded execution time
o e.g. object tracking
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WCET Analysis

Accurate &
sound model of

Program Control
9 Flow

binary s  Graph

pipeline, caches

Micro- Integer
architecture linear
model x equations

Infeasible \

path info Scalability!

Pessimism!

AAAAAAAAA
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seL4 WCET Analysis [Blackham et al *11, “12]

Pessimism due to

under-specified
hardware

| ®
‘ 995 ‘ ‘ " Observed
ﬁ 378 «Computed

0 100 200 300 Hs

WCET presently limited by verification practicalities
« without regard to verification achieved 50 ps

* 10 ps seem achievable

« BCET~ 1ps
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Why Have Overload?

» Faults (software, EMI, hardware)
* Incorrect assumptions about environment
*  Optimistic WCET
— Computing WCET of non-trivial programs is hard, often infeasible!
— Safe WCET bounds tend to be highly pessimistic (orders of magnitude!)
— WOCET often very unlikely and orders of magnitude worse than “normal”
o thanks to caches, pipelines, under-specified hardware
o requires massive over-provisioning

Way out?

* Need explicit notion of importance: criticality

» Expresses effect of failure on the system mission
— Catastrophic, hazardous, major, minor, no effect

» Orthogonal to scheduling priority!
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Mixed Criticality

» A mixed-criticality system supports multiple criticalities concurrently
— Eg in avionics: consolidation of multiple functionalities
— Driver: space, weight and power (SWaP) limitations (translates into $$$)

Certification of Higher criticality certification
critical components * More costly
must not depend on * More pessimistic (eg WCET)

less critical ones!

Flight control ( Autopilot )
Highly critical Less critical

{ 0s )

.........
[
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DO-178B Design Assurance Levels
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. stndarg CATASTROPHIC
Criticality, Og—ol ) HAZARDOUS
development,
assurance 1)  MAJOR
cost -y
*4)  MINOR
')  No Effect
||
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Mixed Criticality Example

High 10 50% ( 20% ) 20% ( 0.05%
Medium 1 NA 20%  25%
Low 100 NA  NA  unknown  10%
Total 50% 80% over 12.55%

* HIGH alone has poor utilisation = gain from consolidation
*  HIGH+MEDIUM can be scheduled for med-crit WCET
* HIGH+MEDIUM cannot be scheduled for most conservative WCET
» Idea: schedule under optimistic assumptions
— Prioritise HIGH if it overruns its MEDIUM WCET
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Mixed Criticality Implementation

*  Whenever running LOW job, ensure no HIGH job misses deadline

» Switch to critical mode when not assured
— Various approaches to determine switch
— eg. zero slack: HIGH job’s deadline = its WCET

» Criticality-mode actions:
— FP: temporarily raise all HIGH jobs’ prios above that of all others
o Simply preempting present job won’t help!
— EDF: drop all LOW deadlines earlier than next HIGH deadline

* Issues:
— Treatment of LOW jobs still rather indiscriminate
— Need to determine when to switch to normal mode, restore prios
— Switch must be fast — must be allowed for in schedulability analysis!
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CPU Bandwidth Reservations

— Account time use against reservation C
— Not runnable when reservation exhausted
— Replenish every T

+ Can support over-committing
— Reduce LOW reservations if HIGH reservations fully used

* Advantages:
— Allows dealing with jobs with unknown (or untrusted) deadlines
— Allows integrating sporadic, asynchronous and soft tasks

Modelled as a “server” which hands out time to jobs
— effectively a simple (FIFO) sub-scheduler
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Idea: Utilisation U = C/T can be seen as required CPU bandwidth

AAAAAAAAA

Constant Bandwidth Server (CBS)

» Popular theoretical model suitable for EDF [Abeni & Buttazzo 98]
* CBS schedules specified bandwidth
— Server has (Q,T): budget Q =U x T and period T
— generates appropriate absolute EDF deadlines on the fly
— when budget goes to zero, new deadline is generated with new budget
— Hard reservation: D;,1 =D, + T (rate-limits)
— Soft reservation: D, =t + T (postpone deadline)

— Schedulability: ¥ U, < 1
_ N B B B

o5 - -
soft h

27
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OS Support For Mixed Criticality

» Spatial isolation: for memory protection, certification independence

» Temporal isolation: enforce CPU time limits
— WCET or budget

+ Criticality notion:
— Get out of jail if HIGH overruns optimistic budget
— Some form of priority/deadline/budget adjustment
— Must be fast, as the cost of change must be included in analysis!

» Support for sharing/communication
— Why?

AAAAAA

SMACCMcopter Drone

Mission Board

Image
Processing

Command &
Control

» O
o c
25
53
VT

eChronos RTOS

(untrusted ) ( trusted )
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SMACCMcopter Mission Computer Architecture

UART UART Server e S CAN
200Hz 200Hz 200z
X

UART CAN
out R

UART
Ry 200Hz

Gateway
UART Lx VM 200Hz
camera
Tx 20Hz \.\
CAN _ CAN

200Hz
Event- L "
- Periodic Critical CAN
tidoeed Task SENE Section H‘C/
Task
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Sharing: Critical Sections as Servers

Client, 2

Client, 2
Hoare-style monitor (9}
serv_1() { client() { serv_2(){
while (1) {
wait(ep); ] while (1) {
while (1) { caII(ep) wait(eap_rq);
/* critical section */ S|gnal(eap ry): /* critical section */
Reply&wayt(ep); signal(eap_ry);
} walt(eap rq); }
} 1 }
}
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Problem: Priority Inversion

Critical Blocked!
Section
t, E

|.|\|\.|.|.|.|.|.|.|>
Preempted

» High-priority job is blocked for a long time by a low-prio job

» Long wait chain: t;—t,—t;—t,

» Worst-case blocking time of t; bounded only by WCET of C,+C,;+C,
* Must find a way to do better!
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Priority Inheritance (“Helping”)
'
:
t [ 2|
t1_ -:n
Lo | T BT

%
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Priority Inheritance Priority Inheritance

+ Ift, blocks on a resource held by t,, and P,>P,, then If t; blocks on a resource held by t,, and P,>P,, then

— t, is temporarily given priority P, — t, is temporarily given priority P,
— when t; releases the resource, its priority reverts to P, — when t, releases the resource, its priority reverts to P,
t;
t,
t, t;
t
3 tz
t2
wa e — ) -
t1
I I T I T I T A Transitive
# Inheritance
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Priority Inheritance Priority Inheritance Protocol (PIP)
« Ift, blocks on a resource held by t,, and P,>P,, then « Ift; blocks on a resource held by t,, and P,>P,, then
— t, is temporarily given priority P, — t, is temporarily given priority P,
— when t; releases the resource, its priority reverts to P, — when t, releases the resource, its priority reverts to P,

» Transitive inheritance
— potentially long blocking chains
— potential for deadlock
» Frequently blocks much longer than necessary

Priority Inheritance:

» Easy to use

» Potential deadlocks

» Complex to implement

» Bad worst-case blocking times
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Priority Ceiling Protocol (PCP)

» Purpose: ensure job can block at most once on a resource

— avoid transitivity, potential for deadlocks
» |dea: associate a ceiling priority with each resource

— equal to the highest priority of jobs that may use the resource

— when job accesses its resource, immediately bump prio to ceiling!
» Also called:

— immediate ceiling priority protocol (ICPP)

— ceiling priority protocol (CPP)

— stack-based priority-ceiling protocol

o because it allows running all jobs on the same stack (i.e. thread)

» Improved version of the original ceiling priority protocol (OCPP)

— ... which is also called the basic priority ceiling protocol

— Requires global tracking of ceiling prios

AAAAAAAAA
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(Immediate) Priority Ceiling Protocol

t,
t3
t,
t1

—
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PCP

IPCP Implementation

» Each task must declare all resources at admission time
— System must maintain list of tasks associated with resource
— Priority ceiling derived from this list
— For EDF the “ceiling” is the floor of relative deadlines

» sel4: “resource declaration” is implicit in capability distribution
— Using critical section requires cap for server’s request endpoint

. IPCP: Prlorlt Ceilin
e 2 Ps = max (P, P;) +1 Req{ures cosr]rect
priority configuration
Prio P, + Deadlock-free

» Easy to implement

Client, 2 » Good worst-case
blocking times
Prio P,

AAAAAA

Problem With Servers As Threads

Has used no time, Running
Keeps running l Running
Cllent1 i
2
Cllent2
Can effectively DoS Shared server has
same-prio threads! highest prio, runs as
long as it has work
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Separate Scheduling Properties from Thread

Classical Thread Attributes

* Priority Not

« Time slice runnable )

N

New Thread Attributes

Priority
Scheduling context capability

Upper bound,

not reservation!
» T: period

Scheduling context object Not yet in

[+ C:budget (<T)

et

OOO

mainline!
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SchedControl capability
conveys right to assign
budgets (i.e. perform
admission control)
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Shared Server with Scheduling Contexts

Running
Client is l
charged for Running
server’s time Client, 2

Cow ' W

Client, 2

rpl
oMl

Server runs on
client’s scheduling
context

Budget expiry
during server
execution?

AAAAAAAAA

=
62 COMP9242 S2/2016 W08 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

B

Budget Expiry Options

* Multi-threaded servers (COMPOSITE [Parmer ‘10])

— Model allows this

— Forcing all servers to be thread-safe is policy &

+ Bandwidth inheritance with “helping” (Fiasco [Steinberg ‘10])

— Ugly dependency chains @

— Wrong thread charged for recovery cost @

» Use timeout exceptions to trigger one of several possible actions:

— Provide emergency budget

— Change criticality

Cancel operation & roll-back server

Implement priority inheritance (if you must...)
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