
Linux, Locking and
Lots of Processors

Peter Chubb

Peter.Chubb@data61.csiro.au

September 2016

A little bit of history

• Multix in the ’60s

• Ken Thompson and Dennis Ritchie in 1967–70

• USG and BSD

• John Lions 1976–95

• Andrew Tanenbaum 1987

• Linus Torvalds 1991

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 2

The history of UNIX-like operating systems is a history of people being dis-
satisfied with what they have and wanting to do something better. It started
when Ken Thompson got bored with MULTICS and wanted to write a com-
puter game (Space Travel). He found a disused PDP-7, and wrote an interac-
tive operating system to run his game. The main contribution at this point was
the simple file-system abstraction. And the key ingredient there was that the
OS did not interpret file contents — an ordinary file is just an array of bytes.
Semantics are imposed by the user of the file.
Other people found it interesting enough to want to port it to other systems,
which led to the first major rewrite — from assembly to C. In some ways UNIX

was the first successfully portable OS.
After Ritchie & Thompson (1974) was published, AT&T became aware of a
growing market for UNIX. They wanted to discourage it: it was common for
AT&T salesmen to say, ‘Here’s what you get: A whole lot of tapes, and an
invoice for $10 000’. Fortunately educational licences were (almost) free, and
universities around the world took up UNIX as the basis for teaching and
research.
The University of California at Berkeley was one of those universities. In

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

1977, Bill Joy (a postgrad) put together and released the first Berkeley Soft-
ware Distribution — in this instance, the main additions were a pascal com-
piler and Bill Joy’s ex editor. Later BSDs contained contributed code from
other universities, including UNSW. The BSD tapes were freely shared be-
tween source licensees of AT&T’s UNIX.
John Lions and Ken Robinson read Ritchie & Thompson (1974), and decided
to try to use UNIX as a teaching tool here. Ken sent off for the tapes, the
department put them on a PDP-11, and started exploring. The license that
came with the tapes allowed disclosure of the source code for ‘Education and
Research’ — so John started his famous OS course, which involved reading
and commenting on the Edition 6 source code.
In 1979, AT&T changed their source licence (it’s conjectured, in response to
the popularity of the Lions book), and future AT&T licensees were not able to
use the book legally any more. UNSW obtained an exemption of some sort;
but the upshot was that the Lions book was copied and copied and studied
around the world, samizdat. However, the licence change also meant that an
alternative was needed for OS courses.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Many universities stopped teaching OS at any depth. One standout was Andy
Tanenbaum’s group in the Netherlands. He and his students wrote an OS
called ‘Minix’ which was (almost) system call compatible with Edition 7 UNIX,
and ran on readily available PC hardware. Minix gained popularity not only
as a teaching tool but as a hobbyist almost ‘open source’ OS.
In 1991, Linus Torvalds decided to write his own OS — after all, how hard
could it be? — to fix what he saw as some of the shortcomings of Minix. The
rest is history.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

A little bit of history

• Basic concepts well established

– Process model

– File system model

– IPC

• Additions:

– Paged virtual memory (3BSD, 1979)

– TCP/IP Networking (BSD 4.1, 1983)

– Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’,

1984)

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 3

The UNIX core concepts have remained more-or-less the same since Ritchie
and Thompson published their CACM paper. The process model and the
file system model have remained the same. The IPC model (inherited from
MERT, a different real-time OS being developed in Bell Labs in the 70s) also
is the same. However there have been some significant additions.
The most important of these were Paged Virtual Memory (introduced when
UNIX was ported to the VAX), which also introduced the idea of Memory-
mapped files; TCP/IP networking, Graphical terminals, and multiprocessing,
in all variants, master-slave, SMP and NUMA. Most of these improvements
were from outside Bell Labs, and fed into AT&T’s product via open-source-like
patch-sharing.
In the late 80s the core interfaces were standardised by the IEEE, in the so-
called POSIX standards.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Abstractions

Linux Kernel

F
ile

s

T
h

re
ad

 o
f

C
o

n
tr

o
l

M
em

o
ry

 S
p

ac
e

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 4

As in any POSIX operating system, the basic idea is to abstract away physical
memory, processors and I/O devices (all of which can be arranged in arbitrar-
ily complex topologies in a modern system), and provide threads, which are
gathered into processes (a process is a group of threads sharing an address
space and a few other resources), that access files (a file is something that
can be read from or written to. Thus the file abstraction incorporates most
devices). There are some other features provided: the OS tries to allocate
resources according to some system-defined policies. It enforces security
(processes in general cannot see each others’ address spaces, and files
have owners). Unlike in a microkernel, some default policy is embedded in
the kernel; but the general principal is to provide tools and mechanisms for
an arbitrary range of policies.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Process model

• Root process (init)

• fork() creates (almost) exact copy

– Much is shared with parent — Copy-On-Write avoids overmuch

copying

• exec() overwrites memory image from a file

• Allows a process to control what is shared

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 5

The POSIX process model works by inheritance. At boot time, an initial pro-
cess (process 1) is hand-crafted and set running. It then sets up the rest of
the system in userspace.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

fork() and exec()

➜ A process can clone itself by calling fork().

➜ Most attributes copied :

➜ Address space (actually shared, marked copy-on-write)

➜ current directory, current root

➜ File descriptors

➜ permissions, etc.

➜ Some attributes shared :

➜ Memory segments marked MAP SHARED

➜ Open files

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 6

First I want to review the UNIX process model. Processes clone themselves
by calling fork(). The only difference between the child and parent process
after a fork() is the return value from fork() — it is zero in the child,
and the value of the child’s process ID in the parent. Most properties of the
child are logical copies of the parent’s; but open files and shared memory
segments are shared between the child and the parent.
In particular, seek operations by either parent or child will affect and be seen
by the other process.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

fork() and exec()

Files and Processes:

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process B

fork()

dup()

Open file descriptor

Offset

In−kernel inode

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 7

Each process has a file descriptor table. Logically this is an array indexed by
a small integer. Each entry in the array contains a flag (the close-on-exec

flag and a pointer to an entry in an open file table. (The actual data structures
used are more complex than this, for performance and SMP locking).
When a process calls open(), the file descriptor table is scanned from 0, and
the index of the next available entry is returned. The pointer is instantiated to
point to an open file descriptor which in turn points to an in-kernel represen-
tation of an index node — an inode — which describes where on disc the bits
of the file can be found, and where in the buffer cache can in memory bits
be found. (Remember, this is only a logical view; the implementation is a lot
more complex.)
A process can duplicate a file descriptor by calling dup() or dup2(). All
dup does is find the lowest-numbered empty slot in the file descriptor table,
and copy its target into it. All file descriptors that are dups share the open file
table entry, and so share the current position in the file for read and write.
When a process fork()s, its file descriptor table is copied. Thus it too
shares its open file table entry with its parent.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

fork() and exec()

switch (kidpid = fork()) {

case 0: /* child */

close(0); close(1); close(2);

dup(infd); dup(outfd); dup(outfd);

execve("path/to/prog", argv, envp);

_exit(EXIT_FAILURE);

case -1:

/* handle error */

default:

waitpid(kidpid, &status, 0);

}

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 8

So a typical chunk of code to start a process looks something like this. fork()
returns 0 in the child, and the process id of the child in the parent. The child
process closes the three lowest-numbered file descriptors, then calls dup()
to populate them again from the file descriptors for input and output. It then
invokes execve(), one of a family of exec functions, to run prog. One could
alternatively use dup2(), which says which target file descriptor to use, and
closes it if it’s in use. Be careful of the calls to close and dup as order is
significant!
Some of the exec family functions do not pass the environment explicitly
(envp); these cause the child to inherit a copy of the parent’s environment.
Any file descriptors marked close on exec will be closed in the child after the
exec; any others will be shared.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Standard File Descriptors

0 Standard Input

1 Standard Output

2 Standard Error

➜ Inherited from parent

➜ On login, all are set to controlling tty

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 9

There are three file descriptors with conventional meanings. File descriptor 0
is the standard input file descriptor. Many command line utilities expect their
input on file descriptor 0.
File descriptor 1 is the standard output. Almost all command line utilities
output to file descriptor 1.
File descriptor 2 is the standard error output. Error messages are output on
this descriptor so that they don’t get mixed into the output stream. Almost all
command line utilities, and many graphical utilities, write error messages to
file descriptor 2.
As with all other file descriptors, these are inherited from the parent.
When you first log in, or when you start an X terminal, all three are set to
point to the controlling terminal for the login shell.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

File model

• Separation of names from content.

• ‘regular’ files ‘just bytes’ → structure/meaning supplied by

userspace

• Devices represented by files.

• Directories map names to index node indices (inums)

• Simple permissions model

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 10

The file model is very simple. In operating systems before UNIX, the OS was
expected to understand the structure of all kinds of files: typically files were
organised as fixed (or variable) length records with one or more indices into
them. One very common organisation was essentially an image of a card
deck! By contrast, UNIX regular files are just a stream of bytes.
Originally in UNIX directories were also just files, albeit with a structure un-
derstood by the kernel. To give more flexibility, they are now opaque to
userspace, and managed by each individual filesystem. The added flexi-
bility makes directory operations more expensive, but allows Linux to deal
with over thirty different filesystems, with varying naming models and on-disk
structures.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

File model

.

..

bash

sh
ls

which
rnano

busybox

setserial

bzcmp

367

368

402
401

265

/ bin / ls

.

..

boot

sbin

bin

dev

var

vmlinux

etc

usr

inode 324

2
300
300

301

324
3
4

5

7
6

2

2
324

8

125

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 11

The diagram shows how the kernel finds a file.
If it gets a file name that starts with a slash (/), it starts at the root of the direc-
tory hierarchy for the current process (otherwise it starts at the current pro-
cess’s current directory). The first link in the pathname is extracted ("bin")
by calling into the filesystem code, and searched for in that root directory.
That yields an inode number, that can be used to find the contents of the
directory. The next pathname component is then extracted from the name and
looked up. In this case, that’s the end, and inode 301 contains the metadata
for "/bin/ls".

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

namei

➜ translate name → inode

➜ abstracted per filesystem in VFS layer

➜ Can be slow: extensive use of caches to speed it up dentry cache —

becomes SMP bottleneck

➜ hide filesystem and device boundaries

➜ walks pathname, translating symbolic links

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 12

Linux has many different filesystem types. Each has its own directory layout.
Pathname lookup is abstracted in the Virtual FileSystem (VFS) layer. Tradi-
tionally, looking up the name to inode (namei) mapping has been slow; Linux
currently uses a cache to speed up lookup.
At any point in the hierarchy a new filesystem can be grafted in using mount;
namei() hides these boundaries from the rest of the system.
Symbolic links haven’t been mentioned yet. A symbolic link is a special file
that holds the name of another file. When the kernel encounters one in a
search, it replaces the name it’s parsing with the contents of the symbolic
link. Some filesystems encode the symbolic name into the directory entry,
rather than having a separate file.
Also, because of changes in the way that pathname lookups happen, there
is no longer a function called namei(); however the files containing the path
lookup are still called namei.[ch].

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Evolution

KISS:

➜ Simplest possible algorithm used at first

➜ Easy to show correctness

➜ Fast to implement

➜ As drawbacks and bottlenecks are found, replace with faster/more

scalable alternatives

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 13

This leads to a general principle: start with KISS. Many of the utilities that
are common on Linux started out as much simpler programs wrapped in shell
scripts; as people elaborated the scripts to provide more functionality, they
became less maintainable, and eventually were refactored into a compiled
language.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

C Dialect

• Extra keywords:

– Section IDs: init, exit, percpu etc

– Info Taint annotation user, rcu, kernel, iomem

– Locking annotations acquires(X), releases(x)

– extra typechecking (endian portability) bitwise

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 14

The kernel is written in C, but with a few extras. Code and data marked
init is used only during initialisation, either at boot time, or at module

insertion time. After it has finished, it can be (and is) freed.
Code and data marked exit is used only at module removal time. If it’s for
a built-in section, it can be discarded at link time. The build system checks for
cross-section pointers and warns about them.
percpu data is either unique to each processor, or replicated.

The kernel build system can do some fairly rudimentary static analysis to
ensure that pointers passed from userspace are always checked before use,
and that pointers into kernel space are not passed to user space. This relies
on such pointers being declared with user or kernel. It can also check
that variables that are intended as fixed shape bitwise entities are always
used that way—useful for bi-endian architectures like ARM.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

C Dialect

• Extra iterators

– type name foreach()

• Extra O-O accessors

– container of()

• Macros to register Object initialisers

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 15

Object-oriented techniques are used throughout the kernel, but implemented
in C.
Almost every aggregate data structure, from lists through trees to page tables
has a defined type-safe iterator.
And there’s a new built-in, container of that, given a type and a member,
returns a typed pointer to its enclosing object.
In addition there is a family of macros to register initialisation functions. These
are ordered (early, console, devices, then general), and will run in parallel
across all available processors within each class.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

C Dialect

• Massive use of inline functions

• Quite a big use of CPP macros

• Little #ifdef use in code: rely on optimizer to elide dead code.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 16

The kernel is written in a style that does not use #ifdef in C files. Instead,
feature test constants are defined that evaluate to zero if the feature is not
desired; the GCC optimiser will then eliminate any resulting dead code.
Because the kernel is huge, but not all files are included in every build, there
has to be a way to register initialisation functions for the various components.
The Linux kernel is quite object-oriented internally; but because it runs on
the bare metal functions that would usually be provided by language support
have to be provided by the OS, or open coded. The container of() macro
is a way to access inheritance; and the xxx initcall() macros are a way
to handle initialisation. Obviously, initialisation has to be ordered carefully;
but after interrupts are set up, all the processors are on line, and the system
has a console, the remaining device initialisers are run; then all the general
initialisers.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scheduling

Goals:

• O(1) in number of runnable processes, number of processors

– good uniprocessor performance

• ‘fair’

• Good interactive response

• topology-aware

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 17

Because Linux runs on machines with up to 4096 processors, any scheduler
must be scalable, and preferably O(1) in the number of runnable processes.
It should also be ‘fair’ — by which I mean that processes with similar priority
should get similar amounts of time, and no process should be starved. In
addition, it should not load excessively a low-powered system with only a
single processor (for example, in your wireless access point); and, at a higher
level, applications should not be able to get more CPU by spawning more
threads/processes.
Because Linux is used by many for desktop/laptop use, it should give good
interactivity, and respond ‘snappily’ to mouse/keyboard even if that compro-
mises absolute throughput.
And finally, the scheduler should be aware of the caching. packaging and
memory topology of the system, so it when it migrates tasks, it can keep them
close to the memory they use, and also attempt to save power by keeping
whole packages idle where possible.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scheduling

Implementation:

• Changes from time to time.

• Currently ‘CFS’ by Ingo Molnar.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 18

Linux has had several different schedulers since it was first released. The
first was a very simple scheduler similar to the MINIX scheduler. As Linux
was deployed to larger, shared, systems it was found to have poor fairness,
so a very simple dual-entitlement scheduler was created.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scheduling

Dual Entitlement Scheduler

0.5 0.7 0.1

0 0

Expired

Running

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 19

The idea here was that there were two queues: a deserving queue, and an
undeserving queue. New and freshly woken processes were given a timeslice
based on their ‘nice’ value. When a process’s timeslice was all used up, it was
moved to the ‘undeserving’ queue. When the ‘deserving’ queue was empty,
a new timeslice was given to each runnable process, and the queues were
swapped. (A very similar scheduler, but using a weight tree to distribute time
slice, was used in Irix 6)
The main problem with this approach was that it was O(n) in the number of
runnable and running processes—and on the big iron with 1024 processors,
that was too slow. So it was replaced in the early 2.6 kernels with an O(1)
scheduler, that was replaced in turn (when it gave poor interactive perfor-
mance on small machines) with the current ‘Completely Fair Scheduler’

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scheduling

CFS:

1. Keep tasks ordered by effective CPU runtime weighted by nice in

red-black tree

2. Always run left-most task.

Devil’s in the details:

• Avoiding overflow

• Keeping recent history

• multiprocessor locality

• handling too-many threads

• Sleeping tasks

• Group hierarchy
Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 20

The scheduler works by keeping track of run time for each task. Assuming
all tasks are cpu bound and have equal priority, then all should run at the
same rate. On a sufficiently parallel machine, they would always have equal
runtime.
The scheduler keeps a period during which all runnable tasks should get a
go on the processor — this period is by default 6ms scaled by the log of
the number of available processors. Within a period, each task gets a time
quantum weighted by its nice. However there is a minimum quantum; if the
machine is overloaded, the period is stretched so that the minimum quantum
is 0.75ms.
To avoid overflow, the scheduler tracks ‘virtual runtime’ instead of actual; vir-
tual runtime is normalised to the number of running tasks. It is also adjusted
regularly to avoid overflow.
Tasks are kept in vruntime order in a red-black tree. The leftmost node then
has the least vruntime so far; newly activated entities also go towards the left
— short sleeps (less than one period) don’t affect vruntime; but after awaking
from a long sleep, the vruntime is set to the current minimum vruntime if that

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

is greater than the task’s current vruntime. Depending on how the scheduler
has been configured, the new task will be scheduled either very soon, or at
the end of the current period.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scheduling

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 21

Your typical system has hardware threads as its bottom layer. These share
functional units, and all cache levels. Hardware threads share a core, and
there can be more than one core in a package or socket. Depending on the
architecture, cores within a socket may share memory directly, or may be con-
nected via separate memory buses to different regions of physical memory.
Typically, separate sockets will connect to different regions of memory.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scheduling

Locality Issues:

• Best to reschedule on same processor (don’t move cache

footprint, keep memory close)

– Otherwise schedule on a ‘nearby’ processor

• Try to keep whole sockets idle

• Somehow identify cooperating threads, co-schedule on same

package?

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 22

The rest of the complications in the scheduler are for hierarchical group-
scheduling, and for coping with non-uniform processor topology.
I’m not going to go into group scheduling here (even though it’s pretty neat),
but its aim is to allow schedulable entities (at the lowest level, tasks or threads)
to be gathered together into higher level entities according to credentials, or
job, or whatever, and then schedule those entities against each other.
Locality, however, is really important. You’ll recall that in a NUMA system,
physical memory is spread so that some is local to any particular processor,
and other memory is a long way off. To get good performance, you want as
much as possible of a process’s working set in local memory. Similarly, even
in an SMP situation, if a process’s working set is still (partly) in-cache it should
be run on a processor that shares that cache.
Linux currently uses a ‘first touch’ policy: the first processor to write to a page
causes the frame for the page to be allocated from that processor’s nearest
memory. On fork(), the new process’s memory is allocated from the same
node as its parent, and it runs on the same node (although not necessarily
on the same core). exec() doesn’t change this (although there is an API

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

to allow a process to migrate before calling exec(). So how do processors
other than the boot processor ever get to run anything?
The answer is in runqueue balancing.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scheduling

• One queue per processor (or hyperthread)

• Processors in hierarchical ‘domains’

• Load balancing per-domain, bottom up

• Aims to keep whole domains idle if possible (power savings)

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 23

There is one runqueue for each lowest schedulable entity (hyperthread or
processor). These are grouped into ‘domains’. Each domain has its ‘load’ up-
dated at regular intervals (where load is essentially sum of vruntime/number
of processors).
One of the idle processors is nominated the ‘idle load balancer’. When a pro-
cessor notices that rebalancing is needed (for example, because it is over-
loaded), it kicks the idle load balancer. The idle load balancer finds the bus-
iest domains, and tries to move tasks around to fill up idle processors near
the busiest domain. It needs more imbalance to move a task to a completely
idle node than to a partly idle node.
Solving this problem perfectly is NP-hard — it’s equivalent to the bin-packing
problem — but the heuristic approach seems to work well enough most of the
time.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Memory Management

Memory in zones

Highmem

Normal

DMA

Normal

Physical address 0

16M

900M

DMA

3GLinux kernel

User VM

VirtualPhysical

Id
en

ti
ty

 M
ap

p
ed

 w
it

h
 o

ff
se

t

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 24

Some of Linux’s memory handling is to account for peculiarities in the PC ar-
chitecture. To make things simple, as much memory as possible is mapped
at a fixed offset, at least on X86-derived processors. Because of legacy de-
vices that could only do DMA to the lowest 16M or memory, the lowest 16M
are handled specially as ZONE DMA — drivers for devices that need memory
in that range can request it. (Some architectures have no physical memory in
that range; either they have IOMMUs or they do not support such devices).
The Linux kernel maps itself in, and has access to all of user virtual memory.
In addition, as much physical memory as possible is mapped in with a simple
offset. This allows easy access for in-kernel use of physical memory (e.g., for
page tables or DMA buffers).
Any physical memory that cannot be mapped (e.g., because there is more
than 4G of RAM on a 32-bit machine) is termed ‘Highmem’ and is mapped
in on an ad-hoc basis. It is possible to compile the kernel with no ‘Normal’
memory, to allow all of the 4G 32-bit virtual address space to be allocated to
userspace, but this comes with a performance hit.
The boundary between user and kernel can be set at configuration time; for

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

64-bit systems it’s at 263 – i.e., all addresses with the highest bit set are for
the kernel.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Memory Management

• Direct mapped pages become logical addresses

– pa() and va() convert physical to virtual for these

• small memory systems have all memory as logical

• More memory → ∆ kernel refer to memory by struct page

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 25

Direct mapped pages can be referred to by logical addresses; there are a
simple pair of macros for converting between physical and logical addresses
for these. Anything not mapped must be referred to by a struct page and
an offset within the page. There is a struct page for every physical page
(and for some things that aren’t memory, such as MMIO regions). A struct

page is less than 10 words (where a word is 64 bits on 64-bit architectures,
and 32 bits on 32-bit architectures).

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Memory Management

struct page:

• Every frame has a struct page (up to 10 words)

• Track:

– flags

– backing address space

– offset within mapping or freelist pointer

– Reference counts

– Kernel virtual address (if mapped)

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 26

A struct page lives on one of several lists, and is in an array from which
the physical address of the frame can be calculated.
Because there has to be a struct page for every frame, there’s consider-
able effort put into keeping them small. Without debugging options, for most
architectures they will be 6 words long; with 4k pages and 64bit words that’s
a little over 1% of physical memory in this table.
A frame can be on a free list. If it is not, it will be in an active list, which is
meant to give an approximation to LRU for the frames. The same pointers
are overloaded for keeping track of compound frames (for SuperPages). Free
lists are organised per memory domain on NUMA machines, using a buddy
algorithm to merge pages into SuperPages as necessary.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Memory Management

File
(or swap)

struct

address_space

struct

vm_area_struct
struct

vm_area_struct
struct

vm_area_struct

struct mm_struct

In virtual address order....

struct task_struct

P
ag

e
T

ab
le

(h
ar

d
w

ar
e

d
ef

in
ed

)

owner

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 27

Some of the structures for managing memory are shown in the slide. What’s
not visible here are the structure for managing swapping out, NUMA locality
and SuperPages.
There is one task struct for each thread of control. Each points to an
mm struct that describes the address space the thread runs in. Processes
can be multi-threaded; one, the first to have been created, is the thread group

leader, and is pointed to by the mm struct. The struct mm struct also
has a pointer to the page table for this process (the shape of which is carefully
abstracted out so that access to it is almost architecture-independent, but it
always has to be a tree), a set of mappings held both in a red-black tree (for
rapid access to the mapping for any address) and in a double linked list (for
traversing the space).
Each VMA (virtual memory area, or struct vm area struct) describes
a contiguous mapped area of virtual memory, where each page within that
area is backed (again contiguously) by the same object, and has the same
permissions and flags. You could think of each mmap() call creating a new
VMA. Any munmap() calls that split a mapping, or mprotect() calls that

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

change part of a mapping can also create new VMAs.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Memory Management

Address Space:

• Misnamed: means collection of pages mapped from the same

object

• Tracks inode mapped from, radix tree of pages in mapping

• Has ops (from file system or swap manager) to:

dirty mark a page as dirty

readpages populate frames from backing store

writepages Clean pages — make backing store the same as

in-memory copy

migratepage Move pages between NUMA nodes

Others. . . And other housekeepingData61 Copyright c© 2016 Linux, Locking and Lots of Processors 28

Each VMA points into a struct address space which represents a map-
pable object. An address space also tracks which pages in the page cache
belong to this object.
Most pages will either be backed by a file, or will be anonymous memory.
Anonymous memory is either unbacked, or is backed by one of a number of
swap areas.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Page fault time

• Special case in-kernel faults

• Find the VMA for the address

– segfault if not found (unmapped area)

• If it’s a stack, extend it.

• Otherwise:

1. Check permissions, SIG SEGV if bad

2. Call handle mm fault():

– walk page table to find entry (populate higher levels if nec.

until leaf found)

– call handle pte fault()

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 29

When a fault happens, the kernel has to work out whether this is a normal
fault (where the page table entry just isn’t instantiated yet) or is a userspace
problem. Kernel faults are rare: they should occur only in a few special cases,
and when accessing user virtual memory. They are handled specially.
It does this by first looking up the VMA in the red-black tree. If there’s no
VMA, then this is an unmapped area, and should generate a segmentation
violation. If it’s next to a stack segment, and the faulting address is at or near
the current stack pointer, then the stack needs to be extended.
If it finds the VMA, then it checks that the attempted operation is allowed —
for example, writes to a read-only operation will cause a Segmentation Viola-
tion at this stage. If everything’s OK, the code invokes handle mm fault()

which walks the page table in an architecture-agnostic way, populating ‘mid-
dle’ directories on the way to the leaf. Transparent SuperPages are also
handled on the way down.
Finally handle pte fault() is called to handle the fault, now it’s estab-
lished that there really is a fault to handle.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Page fault time

handle pte fault(): Depending on PTE status, can

• provide an anonymous page

• do copy-on-write processing

• reinstantiate PTE from page cache

• initiate a read from backing store.

and if necessary flushes the TLB.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 30

There are a number of different states the pte can be in. Each PTE holds
flags that describe the state.
The simplest case is if the PTE is zero — it has only just been instantiated. In
that case if the VMA has a fault handler, it is called via do linear fault()

to instantiate the PTE. Otherwise an anonymous page is assigned to the PTE.
If this is an attempted write to a frame marked copy-on-write, a new anony-
mous page is allocated and copied to.
If the page is already present in the page cache, the PTE can just be rein-
stantiated – a ‘minor’ fault. Otherwise the VMA-specific fault handler reads
the page first — a ‘major’ fault.
If this is the first write to an otherwise clean page, it’s corresponding struct

page is marked dirty, and a call is made into the writeback system — Linux
tries to have no dirty page older than 30 seconds (tunable) in the cache.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Driver Interface

Three kinds of device:

1. Platform device

2. enumerable-bus device

3. Non-enumerable-bus device

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 31

There are essentially three kinds of devices that can be attached to a com-
puter system:

1. platform devices exist at known locations in the system’s IO and mem-
ory address space, with well known interrupts. An example are the
COM1 and COM2 ports on a PC.

2. Devices on a bus such as PCI or USB have unique identifiers that can
be used at run-time to hook up a driver to the device. It is possible to
enumerate all devices on the bus, and find out what’s attached.

3. Devices on a bus such as i2c or ISA have no standard way to query
what they are.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Driver Interface

Enumerable buses:

static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {

{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,PCI_DEVICE_ID_REALTEK_8139),

{ PCI_DEVICE(PCI_VENDOR_ID_TTTECH,PCI_DEVICE_ID_TTTECH_MC322),

{ },

};

MODULE_DEVICE_TABLE(pci, cp_pci_tbl);

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 32

Each driver for a bus that identifies devices by some kind of ID declares a
table of IDs of devices it can driver. You can also specify device IDs to bind
against as a module parameter.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Driver Interface

Driver interface:

init called to register driver

exit called to deregister driver, at module unload time

probe() called when bus-id matches; returns 0 if driver claims device

open, close, etc as necessary for driver class

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 33

All drivers have an initialisation function, that, even if it does nothing else,
calls a bus register driver() function to tell the bus subsystem which
devices this driver can manage, and to provide a vector of functions.
Most drivers also have an exit() function, that deregisters the driver.
When the bus is scanned (either at boot time, or in response to a hot-plug
event), these tables are looked up, and the ‘probe’ routine for each driver that
has registered interest is called.
The first whose probe is successful is bound to the device. You can see the
bindings in /sys

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Driver Interface

Platform Devices:

static struct platform_device nslu2_uart = {

.name = "serial8250",

.id = PLAT8250_DEV_PLATFORM,

.dev.platform_data = nslu2_uart_data,

.num_resources = 2,

.resource = nslu2_uart_resources,

};

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 34

Platform devices are made to look like bus devices. Because there is no
unique ID, the platform-specific initialisation code registers platform devices
in a large table.
Here’s an example, from the SLUG. Each platform device is described by a
struct platform device that contains at the least a name for the de-
vice, the number of ‘resources’ (IO or MMIO regions) and an array of those
resources. The initialisation code calls platform device register() on
each platform device. This registers against a dummy ‘platform bus’ using
the name and ID.
The 8250 driver eventually calls serial8250 probe() which scans the
platform bus claiming anything with the name ‘serial8250’.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Driver Interface

non-enumerable buses: Treat like platform devices

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 35

At present, devices on non-enumerable buses are treated a bit like platform
devices: at system initialisation time a table of the addresses where devices
are expected to be is created; when the driver for the adapter for the bus is
initialised, the bus addresses are probed.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Device Tree

• Describe board+peripherals

– replaces ACPI on embedded systems

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 36

Recent kernels are moving away from putting platform devices into C code, in
favour of using a flattened device tree, which describes the topology of buses,
devices, clocks and regulators, so a single kernel can run on more than one
board.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Summary

• I’ve told you status today

– Next week it may be different

• I’ve simplified a lot. There are many hairy details

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 37

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

File systems

I’m assuming:

• You’ve already looked at ext[234]-like filesystems

• You’ve some awareness of issues around on-disk locality and I/O

performance

• You understand issues around avoiding on-disk corruption by

carefully ordering events, and/or by the use of a Journal.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 38

If you don’t understand any of this – stop me now for a quick refresher course!

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Normal File Systems

• Optimised for use on spinning disk

• RAID optimised (especially XFS)

• Journals, snapshots, transactions...

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 39

Most ‘traditional’ file systems optimise for spinning disk. They arrange the
disk into regions, and try to put directory entries, inodes and disk blocks into
the same region.
Some also take RAID into account, and try to localise files so that a reasonably-
sized single read can be satisfied from one spindle; and writes affect only two
spindles (data plus parity).
Many use a journal for filesystem consistency. The journal is either in a fixed
part of the disk (ext[34], XFS, etc) or can wander over the disk (reiserFS); in
most cases only metadata is journalled.
And more advanced file systems (XFS, VxFS, etc) arrange related I/O oper-
ations into transactions and use a three-phase commit internally to provide
improved throughput in a multiprocessor system.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

RAID performance

Chunk

Stripe

p

p

p

p

p

p

p

p

p

p

p

p
Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 40

RAID (Redundant array of inexpensive discs) is a way to get more reliability
and performance out of cheap disks. It’s a truism that you can pick any two
from reliable, fast, large, and inexpensive.
The idea is to use multiple discs together. There are obviously a variety of
arrangements for that; either simply concatenating the discs (raid 0); simply
mirroring some discs (each has the same content, raid 1), or more complex
parity or parity plus mirroring (raid 5 or 6; raid 6 has two parity blocks per
stripe, raid 5 has one; raid 50 mirrors two raid 5 arrays).
For random read I/O, it’s likely that the seek latency will be reduced, because
adjacent reads fall on different spindles. And reliability is enhanced (providing
the driver can detect errors) because there is a parity block in each stripe (for
raid 5 or 6) so data can be recovered even if a drive fails.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

RAID performance

p

p

p

p

p

p

p

p

p

p

p

p

p

Update block here

Read

Write

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 41

But consider writes. If you update a single block, the parity block also has to
be updated. That means reading every other block in the stripe as well.
So it’s best to write an entire stripe at once. Filesystems that understand
RAID attempt to do this, if the stripe isn’t too big.
So there is a tension between small chunk size (say, 64k) which means that
large reads have to span spindles, but that allow better write and small-file
performance, and larger chunk sizes (up to a couple of Mb) that allow good
read performance for large contiguous chunks, but are expensive to write.
Also consider reliability. The error rate for commodity SATA and SAS drives is
around 10−15 — so after moving only 0.88PB of data you expect to see an er-
ror. Rebuilding the array after a failure will hit this after only a few hundred re-
builds — see http://www.enterprisestorageforum.com/technology/feat
for details.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

http://www.enterprisestorageforum.com/technology/features/article.php/3839636/RAIDs-Days-May-Be-Numbered.htm

Flash Memory

• NOR Flash

• NAND Flash

– MTD — Memory Technology Device

– eMMC, SDHC etc — A JEDEC standard

– SSD, USB — and other disk-like interfaces

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 42

But more and more storage nowadays is no longer on spinning rust. Flash-
memory-based storage has very different characteristics.
There are basically two kinds of Flash memory: NOR flash, and NAND flash.
Check the Wikipedia article if you want a more detailed view of how they differ;
from a systems perspective, NOR flash is byte oriented so you can treat it like
(slow) RAM; NAND flash is block oriented, so you have to read/write it a block
at a time, like a disk.
I’m not going to talk any more about NOR flash; NAND flash memory has
much higher density, and is the common cheap(ish) flash used on-board in
embedded systems, SD cards, USB sticks and SSDs.
NAND flash comes with a variety of system interfaces. The most common
are the Memory Technology Device interface (MTD), the MMC (Multi-Media
Card) interface (a JEDEC standard, used for eMMC on-board flash and for
SD cards) and a standard disk interface (such as used in USB sticks and in
SSDs).

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

NAND characteristics

Erase Block

Page

Interface Circuitry

NAND Flash Chip

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 43

NAND flash is accessed as pages, typically 512 bytes. (To avoid confusion
with operating system pages, I’m going to refer to them as blocks). Writes
write only zeroes, so data has to be erased before it is written.
Erasure happens in larger units — an erase block can be two or four megabytes,
or even more. What’s more, as each NAND cell can hold one (Single-level
cell, SLC) or two or three (multi-level-cell, MLC) values, erase blocks can
be power-of-three as well as power-of-two blocks big. This means that one
cannot update a block in-place.
You’ll have noticed that the available capacity on an SD card is significantly
less than the rated capacity. Although the flash inside an SD card or USB
stick is always a power-of-two size, it’s quoted in thousands of megabytes,
not 1024s of megabytes. The ‘spare’ capacity is used for holding metadata,
and as erased blocks for use on writes. The controller cannot usually tell
which blocks are unused by the filesystem, and has to assume that all blocks
are always in use.
There are some other gotchas.
Blocks wear out. Currently available SLC NAND chips have around 100 000

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

erase cycles before they wear out (MLC chips are around half this); there is
some research into adding heaters onto the chip to anneal and restore the
cells, which would give three orders of magnitude better lifetime, but such
NAND flash is not yet commercially available.
In addition, reading can disturb adjacent cells. Read-Disturb operates over a
few hundred thousand read operations, and will cause errors, not in the cells
being read, but in adjacent cells. Erasure fixes this problem.
These two characteristics together mean that flash has to be managed, ei-
ther by a filesystem that understands FLASH characteristics (e.g., JFFS2,
YAFFS), or by a wear-levelling translation layer and a garbage collector.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Flash update

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 44

To update a block, the controller first finds an empty erased block, writes the
update to it, updates the FTL bookeeping pointer, and marks the old block as
garbage to be collected later.
But doing translation on 512 byte chunks is really inefficient. It means you
have to keep a lot of data around, and because most filesystems write in
larger chunks, you have to do lots of book-keeping for every write. For ex-
ample, FAT filesystems always write an entire cluster size (typically 64k for
FAT32, but could be more). So every write involves 128 updates, and modi-
fies 256 words of storage, if the controller maps individual blocks.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Flash update

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 45

So instead of mapping per-block, most SD cards use what are variously called
segments or allocation units. An allocation unit is a strict multiple of the erase-
size, typically 4M or 8M.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

sdcards

Erase Block

Page

Interface Circuitry

NAND Flash Chip

NOR flash

or

EEPROM

RAM

Processor

Interface Circuitry
Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 46

An SD card or USB flash memory contains a controller in addition to the
NAND flash chip. The controller is typically a custom-designed low-power mi-
crocontroller, together with a few words of non-volatile memory (perhaps NOR
flash), some RAM, and some interface and power-management circuitry. It
is often mounted chip-on-board. One of the big differences between cards is
the controller plus its firmware, rather than the flash memory.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

sdcards

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 47

Here are some pictures. The one on the left is a fake Lenxs 16G SD card;
you can see the 8Gb (Samsung) NAND flash chip, and the Chip-On-Board
(COB) controller under the epoxy blob,
The one on the right is a SanDisk 1G card. Everything is encapsulated be-
tween the layers of the card, so there’s not a lot to see.
I’ve been told that SanDisk design and fabricate their own flash and con-
trollers; some other companies use third-party controllers and flash.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

The controller:

• Presents illusion of ‘standard’ block device

• Manages writes to prevent wearing out

• Manages reads to prevent read-disturb

• Performs garbage collection

• Performs bad-block management

Mostly documented in Korean patents referred to by US patents!

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 48

The controller has to do a number of things, at speed. Total power consump-
tion is fairly small — up to 2.88 Watts for a UHS-1 card; much less for standard
cards. So it tends to be a fairly limited mmu-less microcontroller, such as the
MCS-51 (or more usually, one of its variants).
The main things the controller has to do in its firmware is to present the illusion
of a standard block device, while managing (transparently) the fact that flash
cannot be overwritten in-place.
It also has to be aware when an SD card or USB stick is wrenched from its
socket. The power pins on the card are longer than the others; this gives
a few milliseconds of power to finalise writes, and to update the controller’s
NVRAM with the block address of any metadata in the Flash.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Wear management

Two ways:

• Remap blocks when they begin to fail (bad block remapping)

• Spread writes over all erase blocks (wear levelling)

In practice both are used.

Also:

• Count reads and schedule garbage collection after some

threshhold

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 49

There are two ways to extend the limited write lifetime of a flash block. The
first is to use ECC to detect cells going bad, and remaop a block when errors
start to appear. The second is to spread out writes over all blocks. By com-
bining with garbage collection, such wear levelling can be achieved with low
overhead.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Preformat

• Typically use FAT32 (or exFAT for sdxc cards)

• Always do cluster-size I/O (64k)

• First partition segment-aligned

Conjecture Flash controller optimises for the preformatted FAT fs

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 50

Removable Flash devices almost always are preformatted with a FAT file sys-
tem. Typically, the first partition starts on an erase boundary (thus being a
good hint for the size of the erase block), and uses a cluster size that is a
good compromise for the allocation unit size used by the controller. It’s likely
that the controller will optimise for the write patterns experienced when using
a FAT fs.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

FAT file systems

C
lu

st
er

In
fo

 B
lo

ck

FAT

Data Area

Root Directory

B
o

o
t

P
ar

am
R

es
er

ve
d

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 51

The reserved area at the start of the filesystem contains a Boot Parameter
Block (essentially the same as a superblock on a UNIX file system). Key
parameters are the location, size, and number of FATs (file allocation tables),
the location of the root directory, and the cluster size.
All disk allocation and I/O is done in cluster-size chunks.
We looked at a lot of different preformatted cards. All used a 64k cluster size,
and had the FATs in the second erase block of the disk. The first erase block
was used only for the MBR.
The Directory entry for a file contains the index of its first cluster. The first
cluster index is then used to look up the next cluster in the FAT, as a chain.
So extending a file involves writing the data into the data area, and cluster
indices into the FAT, and finally updating the directory entry with the file size.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

FAT file systems

Conjecture The controller has some number of buffers it treats

specially, to allow more than one write locus.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 52

Given that the SD I/O speed is higher than the speed to write to Flash, the
controller must have RAM to buffer the writes.
We timed writes at various offsets from each other to determine the size of
the buffer (we expect that two adjacent writes within the same open buffer
will be fast, but when the buffer finally is committed to flash, it’ll be slower
— which is what we found), and to discover how many write loci could be
handled simultaneously.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Testing SDHC cards

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 53

We ran fairly extensive benchmarks on four full-sized cards using a Sabre-
Lite: a Kingston 32Gb class 10, a Toshiba 16Gb class 10, and two different
SanDisk UHS-1 cards: an Extreme, and an Extreme Pro.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

SD Card Characteristics

Card Price/G #AU Page size Erase Size

Kingston

Class 10

$0.80 2 128k 4M

Toshiba Class

10

$1.20 2 64k 8M

SanDisk

Extreme

UHS-1

$5.00 9 64k 8M

SanDisk

Extreme Pro

UHS-1

$6.50 9 16k 4M

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 54

The Toshiba card we measured had two open allocation units, but didn’t seem
to treat the FAT area specially.
SanDisk and Samsung cards had between six and nine allocation areas, and
didn’t seem to treat the FAT area specially.
For the Kingston cards, which have only two open allocation units, one of
them appears to be pinned to the FAT area. So you can do fast writes to
a single open file, extending it in the FAT area, and in the data area. But
multiple files are slow, and any filesystem that doesn’t use the FAT area in the
same way will be slow.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Write Patterns: File Create

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
lo

ck
N

um
be

r

Time

Write 40M File

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 0 2 4 6 8 10 12
B

lo
ck

N
um

be
r

Time

Write 40M File

(On Toshiba Exceria card)

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 55

You can see from the scatter plots that creating a file on a FAT32 file sys-
tem is almost ideal for a two open-allocation-unit system. All writes are in
64k chunks; the FAT remains open for extensions; and the buffer becomes
available for the directory entry after closing off the last write to the file’s data.
However, ext4 and XFS don’t behave like this at all. Ext4 on an unaged
filesystem is pretty good at maintaining locality, but has some writes a while
after the file is closed: one to update the free-block bitmap, one for the inode,
and one for the journal.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Write Patterns: File Create

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 0 1 2 3 4 5 6 7

"~/iozone.dat" using 1:2

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 56

Bonnie showed very little difference between the cards; large write perfor-
mance was around proportional to the price per gigabyte, other benchmarks
were around the same for all cards.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

F2FS

• By Samsung

• ‘Use on-card FTL, rather than work against it’

• Cooperate with garbage collection

• Use FAT32 optimisations

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 57

F2FS was designed by Samsung for SD cards and other higher-level Flash
devices. It works well on USB sticks and SD cards.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

F2FS

• 2M Segments written as whole chunks — always writes at log

head

— aligned with FLASH allocation units

• Log is the only data structure on-disk

• Metadata (e.g., head of log) written to FAT area in single-block

writes

• Splits Hot and Cold data and Inodes.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 58

It is designed to work with the flash translation layer. It understands the way
that garbage collection might happen, and that full-segment writes are the
most efficient. It uses log-based allocation to make the most of the FLASH
characteristics.
It also divides files up based on their type. Files that are likely to be long lived,
and written only once (e.g., photos, movies), are marked as ‘cold’ and stored
in a different area of the file system from other files. This helps the garbage
collector.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Benchmarks: PostMark 32k Read

Kingston
 Toshiba

 Sandisk Extreme
 SanDisk Extreme Pro

Filesystem

E
X

T
4

F
A

T
32

 1

 0

 2

 3

 5

 4

F
2F

S

M
B

/s

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 59

Postmark, which writes lots of small files, showed massive differences be-
tween the cards. As its read and write sizes are much less than the page
size, it forces a program/erase or a garbage collection on every write — mak-
ing it worse case for the cards. The file systems that hide this (F2FS) do
much better, even on the cheapest card.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Using non-f2fs

• Observation: XFS and ext4 already understand RAID

• RAID has multiple chunks, and a fixed stride, so...

• Configure FS as if for RAID

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 60

F2FS is newish, and maybe you don’t trust it for a production machine. Can
we get as good performance using a more mature filesystem?
A RAID system has a fixed number of spindles, and stripes data across all of
them in fixed size chunks. If we configure a filesystem, telling it the allocation-
unit-size is the chunk size, and the RAID stripe width is the number of open
allocation units possible, would we get as good performance as F2FS gives?

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Using non-f2fs

Short answer: You see some performance

improvement

But the effect isn’t generally enough to bother with if you hav

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 61

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

The Multiprocessor Effect:

• Some fraction of the system’s cycles are not available for

application work:

– Operating System Code Paths

– Inter-Cache Coherency traffic

– Memory Bus contention

– Lock synchronisation

– I/O serialisation

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 62

We’ve seen that because of locking and other issues, some portion of the
multiprocessor’s cycles are not available for useful work. In addition, some
part of any workload is usually unavoidably serial.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

Amdahl’s law:

If a process can be split such that σ

of the running time cannot be sped

up, but the rest is sped up by

running on p processors, then

overall speedup is

p

1 + σ(p− 1)

T(1−σ) Tσ

Tσ

T(1−σ)

T(1−σ)

T(1−σ)

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 63

It’s fairly easy to derive Amdahl’s law: perfect speedup for p processors would
be p (running on two processors is twice as fast, takes half the time, than
running on one processor).
The time taken for the workload to run on p processors if it took 1 unit of time
on 1 processor is σ + (1 − σ)/p. Speedup is then 1/(σ + (1 − σ)/p) which,
multiplying by p/p gives p/(pσ + 1− σ), or p/(1 + σ(p− 1))

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

1 processor

Throughput

Applied load

2 processors

3 processors

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 64

The general scalability curve looks something like the one in this slide. The
Y-axis is throughput, the X-axis, applied load. Under low loads, where there
is no bottleneck, throughput is determined solely by the load—each job is
processed as it arrives, and the server is idle for some of the time. Latency
for each job is the time to do the job.
As the load increases, the line starts to curve. At this point, some jobs are
arriving before the previous one is finished: there is queueing in the system.
Latency for each job is the time spent queued, plus the time to do the job.
When the system becomes overloaded, the curve flattens out. At this point,
throughput is determined by the capacity of the system; average latency be-
comes infinite (because jobs cannot be processed as fast as they arrive, so
the queue grows longer and longer), and the bottleneck resource is 100%
utilised.
When you add more resources, you want the throughput to go up. Unfortu-
nately, because of various effects we’ll talk about later that doesn’t always
happen...

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

3 processors

2 processors

Applied load

Throughput

Latency

Throughput

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 65

This graph shows the latency ‘hockey-stick’ curve. Latency is determined by
service time in the left-hand flat part of the curve, and by service+queueing
time in the upward sloping right-hand side.
When the system is totally overloaded, the average latency is infinite.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

Gunther’s law:

C(N) =
N

1 + α(N − 1) + βN(N − 1)

where:

N is demand

α is the amount of serialisation: represents Amdahl’s law

β is the coherency delay in the system.

C is Capacity or Throughput

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 66

Neil Gunther (2002) captured this in his ‘Universal Scalability Law’, which is
a closed-form solution to the machine-shop-repairman queueing problem.
It has two parameters, α which is the amount of non-scalable work, and beta
which is to account for the degradation often seen in system-performance
graphs, because of cross-system communication (‘coherency’ or ‘contention’,
depending on the system).
The independent variable N can represent applied load, or number of logic-
units (if the work per logic-unit is kept constant).

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t

Load

USL with alpha=0,beta=0

α = 0, β = 0

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t

Load

USL with alpha=0.015,beta=0

α > 0, β = 0

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t

Load

USL with alpha=0.001,beta=0.0000001

α > 0, β > 0

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 67

Here are some examples. If α and β are both zero, the system scales
perfectly—throughput is proportional to load (or to processors in the system).
If α is slightly positive it indicates that part of the workload is not scalable.
Hence the curve plateaus to the right. Another way of thinking about this is
that some (shared) resource is approaching 100% utilisation.
If in addition β is slightly positive, it implies that some resource is contended:
for example, preliminary processing of new jobs steals time from the main
task that finishes the jobs.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

Queueing Models:

ServerQueue

Poisson

arrivals

Poisson

service times

ServerQueue

Poisson

service times

Same Server

High Priority

Normal Priority

Sink

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 68

You can think of the system as in these diagrams. The second diagram has
an additional input queue; the same servers service both queues, so time
spent serving the input queue is stolen from time servicing the main queue.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

Real examples:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

Load

Postgres TPC throughput

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 69

These graphs are courtesy of Etienne, Adrian and the Rapilog team. This
is a throughput graph for TPC-C on an 8-way multiprocessor using the ext3
filesystem with a single disk spindle. As you can see, β > 0, indicating co-
herency delay as a major performance issue.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

Load

USL with alpha=0.342101,beta=0.017430
Postgres TPC throughput

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 70

Using R to fit the scalability curve, we get β = 0.017, α = 0.342 — you can
see the fit isn’t perfect, so fixing the obvious coherency issue isn’t going to fix
the scalability entirely.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t

Load

Postgres TPC throughput, separate log disc

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 71

Moving the database log to a separate filesystem shows a much higher peak,
but still shows a β > 0. There is still coherency delay in the system, probably
the file-system log. From other work I’ve done, I know that ext3’s log becomes
a serialisation bottleneck on a busy filesystem with more than a few cores —
switching to XFS (which scales better) or ext2 (which has no log) would be
the next step to try.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

Another example:

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50

Jo
bs

 p
er

 M
in

ut
e

Number of Clients

01-way
02-way
04-way
08-way
12-way

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 72

This shows the reaim-7 benchmark running on various numbers of cores on
an HP 12-way Itanium system. As you can see, the 12-way line falls below the
8-way line — α must be greater than zero. So we need to look for contention
in the system somewhere.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

SPINLOCKS HOLD WAIT

UTIL CON MEAN(MAX) MEAN(MAX)(% CPU) TOTAL NOWAIT SPIN RJECT NAME

72.3% 13.1% 0.5us(9.5us) 29us(20ms)(42.5%) 50542055 86.9% 13.1% 0% find lock page+0x30

0.01% 85.3% 1.7us(6.2us) 46us(4016us)(0.01%) 1113 14.7% 85.3% 0% find lock page+0x130

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 73

Lockmetering shows that a single spinlock in find lock page() is the problem:

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

struct page *find lock page(struct address space *mapping,

unsigned long offset)

{

struct page *page;

spin lock irq(&mapping->tree lock);

repeat:

page = radix tree lookup(&mapping>page tree, offset);

if (page) {

page cache get(page);

if (TestSetPageLocked(page)) {

spin unlock irq(&mapping->tree lock);

lock page(page);

spin lock irq(&mapping->tree lock);

. . .
Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 74

So replace the spinlock with a rwlock, and bingo:

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Scalability

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50

Jo
bs

 p
er

 M
in

ut
e

Number of Clients

01-way
02-way
04-way
08-way
12-way
16-way

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 75

The scalability is much much better.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Tackling scalability problems

• Find the bottleneck

• fix or work around it

• check performance doesn’t suffer too much on the low end.

• Experiment with different algorithms, parameters

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 76

Fixing a performance problem for your system can break someone else’s
system. In particular, algorithms that have good worst-case performance on
large systems may have poorer performance on small systems that algo-
rithms that do not scale. The holy grail is to find ways that work well for two
processor and two thousand processor systems.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Tackling scalability problems

• Each solved problem

uncovers another

• Fixing performance for one

workload can worsen another

• Performance problems can

make you cry

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 77

Performance and scalability work is like peeling an onion. Solving one bottle-
neck just moves the overall problem to another bottleneck. Sometimes, the
new bottleneck can be worse than the one fixed.
Just like an onion, performance problems can make you cry.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Doing without locks

Avoiding Serialisation:

• Lock-free algorithms

• Allow safe concurrent access without excessive serialisation

• Many techniques. We cover:

– Sequence locks

– Read-Copy-Update (RCU)

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 78

If you can reduce serialisation you can generally improve performance on
multiprocessors. Two locking techniques are presented here.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Doing without locks

Sequence locks:

• Readers don’t lock

• Writers serialised.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 79

If you have a data structure that is read-mostly, then a sequence lock may be
of advantage. These are less cache-friendly than some other forms of locks.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Doing without locks

Reader:

volatile seq;

do {

do {

lastseq = seq;

} while (lastseq & 1);

rmb();

....

} while (lastseq != seq);

Writer:

spinlock(&lck);

seq++; wmb()

...

wmb(); seq++;

spinunlock(&lck);

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 80

The idea is to keep a sequence number that is updated (twice) every time a
set of variables is updated, once at the start, and once after the variables are
consistent again. While a writer is active (and the data may be inconsistent)
the sequence number is odd; while the data is consistent the sequence is
even.
The reader grabs a copy of the sequence at the start of its section, spinning
if the result is odd. At the end of the section, it rereads the sequence, if it is
different from the first read value, the section is repeated.
This is in effect an optimistic multi-reader lock. Writers need to protect against
each other, but if there is a single writer (which is often the case) then the
spinlocks can be omitted. A writer can delay a reader; readers do not delay
writers – there’s no need as in a standard multi-reader lock for writers to delay
until all readers are finished.
This is used amongst other places in Linux for protecting the variables con-
taining the current time-of-day.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Doing without locks

RCU: McKenney (2004), McKenney et al. (2002)

1. 2.

3. 4.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 81

Another way is so called read-copy-update. The idea here is that if you have
a data structure (such as a linked list), that is very very busy with concurrent
readers, and you want to remove an item in the middle, you can do it by
updating the previous item’s next pointer, but you cannot then free the item
just unlinked until you’re sure that there is no thread accessing it.
If you prevent preëmption while walking the list, then a sufficient condition is
that every processor is either in user-space or has done a context switch. At
this point, there will be no threads accessing the unlinked item(s), and they
can be freed.
Inserting an item without locking is left as an exercise for the reader.
Updating an item then becomes an unlink, copy, update, and insert the copy;
leaving the old unlinked item to be freed at the next quiescent point.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors

Background Reading

References

McKenney, P. E. (2004), Exploiting Deferred Destruction: An Analysis

of Read-Copy-Update Techniques in Operating System Kernels,

PhD thesis, OGI School of Science and Engineering at Oregon

Health and Sciences University.

URL:

http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

McKenney, P. E., Sarma, D., Arcangelli, A., Kleen, A., Krieger, O. &

Russell, R. (2002), Read copy update, in ‘Ottawa Linux Symp.’.

URL:

http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf

Ritchie, D. M. (1984), ‘The evolution of the UNIX time-sharing system’,Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 82

Background Reading

AT&T Bell Laboratories Technical Journal 63(8), 1577–1593.

URL: ftp://cm.bell-labs.com/who/dmr/hist.html

Ritchie, D. M. & Thompson, K. (1974), ‘The UNIX time-sharing

system’, CACM 17(7), 365–375.

Data61 Copyright c© 2016 Linux, Locking and Lots of Processors 83

http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf
ftp://cm.bell-labs.com/who/dmr/hist.html

