
COMP9242 Advanced OS
S2/2016 W06:
Caches: What Every OS Designer Must Know
@GernotHeiser

2 © 2016 Gernot Heiser. Distributed under CC Attribution License

Copyright Notice
These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:

–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2016 W06

3 © 2016 Gernot Heiser. Distributed under CC Attribution License

The Memory Wall

COMP9242 S2/2016 W06

Multicore offsets stagnant per-core performance with proliferation of cores
•  Same effect on overall memory bandwidth
•  Basic trend is unchanged

4 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  Cache is fast (1–5 cycle access time) memory sitting between fast registers
and slow RAM (10–100s cycles access time)

•  Holds recently-used data or instructions to save memory accesses
•  Matches slow RAM access time to CPU speed if high hit rate (> 90%)
•  Is hardware maintained and (mostly) transparent to software
•  Sizes range from few KiB to several MiB.
•  Usually a hierarchy of caches (2–5 levels),
•  On contemporary processors generally on-chip

Good overview of implications of caches for operating systems: [Schimmel 94]

Registers Cache Main
Memory Disk

Caching

COMP9242 S2/2016 W06

5 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cache Organization

•  Data transfer unit between registers and L1 cache: ≤ 1 word (1–16B)
•  Cache line is transfer unit between cache and RAM (or lower cache)

–  typically 16–32 bytes, sometimes 128 bytes and more
•  Line is also unit of storage allocation in cache
•  Each line has associated control info:

–  valid bit
–  modified bit
–  tag

•  Cache improves memory access by:
–  absorbing most reads (increases bandwidth, reduces latency)
–  making writes asynchronous (hides latency)
–  clustering reads and writes (hides latency)

COMP9242 S2/2016 W06

6 © 2016 Gernot Heiser. Distributed under CC Attribution License

CPU
Virtual
Address MMU

Virtually
Indexed
Cache

Physically
Indexed
Cache

Main
Memory

Data Data Data

Physical
Address

Physical
Address

Cache Access

•  Virtually indexed: looked up by virtual address
–  operates concurrently with address translation

•  Physically indexed: looked up by physical address
–  requires result of address translation

•  Usually have hierarchy: L1 (closest to core), … Ln (closest to RAM)
–  L1 may use virtual address, all others use physical only

COMP9242 S2/2016 W06

7 © 2016 Gernot Heiser. Distributed under CC Attribution License

•  The tag is used to distinguish lines of a set…
•  Consists of high-order bits not used for indexing

t1

t s b

Address

t0

t2

Byte #

data tag

tag

Set #

1 Set

Cache Indexing

COMP9242 S2/2016 W06

8 © 2016 Gernot Heiser. Distributed under CC Attribution License

CPU
Registers

Main Memory Line 1

Line 2

Line 3

Line 4

Set 0

Set 1

Cache Indexing

•  Address hashed to produce index of line set
•  Associative lookup of line within set
•  n lines per set: n-way set-associative cache

–  typically n = 1 … 5, some embedded processors use 32–64
–  n = 1 is called direct mapped
–  n = ∞ is called fully associative (unusual for I/D caches)

•  Hashing must be simple (complex hardware is slow)
–  generally use least-significant bits of address (except L3 on recent x86)

COMP9242 S2/2016 W06

9 © 2016 Gernot Heiser. Distributed under CC Attribution License

tag(25) index(3) offset(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Offset bits used to
select appropriate
bytes from line

Index bits
used to select
unique line to
match

Tag used to check
whether line contains
requested address

Cache Indexing: Direct Mapped

COMP9242 S2/2016 W06

10 © 2016 Gernot Heiser. Distributed under CC Attribution License

tag(26) index(2) offset(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Cache Indexing: 2-Way Associative

Offset bits used to
select appropriate
bytes from line

Index bits
used to select
unique set to
match within

Tag checked against
both lines for match

COMP9242 S2/2016 W06

11 © 2016 Gernot Heiser. Distributed under CC Attribution License

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3

Word 3
Word 3

Word 3

Word 3

Word 3

Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

tag(28) offset(4)

Tag compared with all
lines for a match

Note: Lookup hardware for many tags
is large and slow ⇒ does not scale

Offset bits used to
select appropriate
bytes from line

Cache Indexing: Fully Associative

COMP9242 S2/2016 W06

12 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cache Mapping Implications
•  Multiple memory locations map to the same cache line

•  Locations mapping to cache set i are said to be of colour i
•  n-way associative cache can hold n lines of the same colour
•  Types of cache misses (“the four Cs”):

–  Compulsory miss: data cannot be in the cache (if infinite size)
o  first access (after flush)

–  Capacity miss: all cache entries are in use by other data
o  would not miss on infinite-size cache

–  Conflict miss: all lines of the correct colour are in use by other data
o  would not miss on fully-associative cache

–  Coherence miss: miss forced by hardware coherence protocol

0 1 … n-1 …

Cache

RAM

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1

0 1 … n-1

COMP9242 S2/2016 W06

13 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cache Replacement Policy
•  Indexing (using address) points to specific line set
•  On miss (all lines of set are valid): replace existing line
•  Replacement strategy must be simple (hardware!)

–  dirty bit determines whether line must be written back
–  typical policies:

o  LRU
o  pseudo-LRU
o  FIFO
o  random
o  toss clean

Address

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

COMP9242 S2/2016 W06

14 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cache Write Policy
•  Treatment of store operations

–  write back: Stores only update cache;
memory is updated once dirty line is replaced (flushed)
þ clusters writes
z memory inconsistent with cache
z multi-processor cache-coherency challenge

–  write through: stores update cache and memory immediately
þ memory is always consistent with cache
z increased memory/bus traffic

•  On store to a line not presently in cache (write miss):
–  write allocate: allocate a cache line and store there

o  typically requires reading line into cache first!
–  no allocate: store directly to memory, bypassing the cache

•  Typical combinations:
–  write-back & write-allocate
–  write-through & no allocate

COMP9242 S2/2016 W06

15 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cache Addressing Schemes
•  For simplicity assumed so far that cache only sees one type of

address: virtual or physical
•  However, indexing and tagging can use different addresses!
•  Four possible addressing schemes:

–  virtually-indexed, virtually-tagged (VV) cache
–  virtually-indexed, physically-tagged (VP) cache
–  physically-indexed, virtually-tagged (PV) cache
–  physically-indexed, physically-tagged (PP) cache

•  PV caches can make sense only with unusual MMU designs
–  not considered any further

COMP9242 S2/2016 W06

16 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtually-Indexed, Virtually-Tagged Cache
•  Also called virtually-addressed cache
•  Various incorrect names in use:

–  virtual cache
–  virtual address cache

•  Uses virtual addresses only
•  Can operate concurrently

with MMU
•  Still needs MMU lookup

for access rights
•  Writeback needs PA

–  TLB lookup?
•  Used for on-core L1

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

CPU

MMU

Physical Memory

COMP9242 S2/2016 W06

17 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtually-Indexed, Physically-Tagged Cache
•  Virtual address for accessing line (lookup)
•  Physical address for tagging
•  Needs complete address translation

for looking up retrieving data
•  Indexing concurrent with MMU

use MMU output for tag check
•  Used for on-core L1

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

index(2) byte(4)

CPU

MMU

Physical Memory

tag(25)

COMP9242 S2/2016 W06

18 © 2016 Gernot Heiser. Distributed under CC Attribution License

Physically-Indexed, Physically-Tagged Cache
•  Only uses physical addresses
•  Address translation result needed

to begin lookup
•  Only choice for Ln, n>1
•  Note: page offset is invariant under

address translation
–  if index bits are a subset of

the offset bits, PP cache
lookup doesn’t need
MMU result!

–  VP=PP in this case;
fast and suitable for
on-core use (L1)

–  This cache has
single page colour

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

CPU

Physical Memory

MMU

COMP9242 S2/2016 W06

19 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cache Issues
•  Caches are managed by hardware transparently to software

–  OS doesn’t have to worry about them, right?
•  Software-visible cache effects:

–  performance
–  homonyms:

o  same address, different data
o  can affect correctness!

–  synonyms (aliases):
o  different address, same data
o  can affect correctness!

Wrong!

VAS1

VAS2

PAS

A

A'

A

A”

B

B'

C

C”

COMP9242 S2/2016 W06

20 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtually-Indexed Cache Issues
Homonyms – same name for different data:
•  Problem: VA used for indexing is

context-dependent
–  same VA refers to different PAs
–  tag does not uniquely identify data!
–  wrong data may be accessed
–  an issue for most OSes

•  Homonym prevention:
–  flush cache on each

context switch
–  force non-overlapping

address-space layout
o  single-address-space OS

–  tag VA with address-space ID (ASID)
o  makes VAs global

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

CPU

MMU

Physical Memory

tag(26) index(2) byte(4)

COMP9242 S2/2016 W06

21 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtually-Indexed Cache Issues
Synonyms – multiple names for same data:
•  Several VAs map to the same PA

–  frame shared between ASs
–  frame multiply mapped within AS

•  May access stale data!
–  same data cached in multiple lines

o  If aliases differ in colour
–  on write, one synonym updated
–  read on other synonym

returns old value
–  physical tags don’t help!
–  ASIDs don’t help!

•  Are synonyms a problem?
–  depends on page and cache size (colours)
–  no problem for R/O data

or I-caches

VD
VD Tag Tag

Word 3
Word 3

Word 2
Word 2

Word 1
Word 1

Word 0
Word 0

CPU

MMU

Physical Memory

VD

VD

Tag

Tag
Tag

Word 0

Word 0

Word 1

Word 1

Word 2

Word 2

Word 3

Word 3

tag(26) index(2) byte(4)

COMP9242 S2/2016 W06

22 © 2016 Gernot Heiser. Distributed under CC Attribution License

Example: MIPS R4x00 Synonyms
•  ASID-tagged, on-chip VP cache

–  16 KiB cache, 2-way set associative, 32 B line size
–  4 KiB (base) page size
–  size/associativity = 16/2 KiB = 8 KiB > page size (2 page colours)

o  16 KiB / (32 B/line) = 512 lines = 256 sets ⇒ 8 index bits (12..5)
o  overlap of tag bits and index bits, but from different addresses!

•  Remember, index determines location of data in cache
–  tag only confirms hit
–  synonym problem iff VA12 ≠ VA’12

–  similar issues on other processors where L1 cache has multiple colours

39

35

13 5 0
VA

Cache
index (8 bits)

tag (24 bits)
0 11

s b

PFN offset PA

COMP9242 S2/2016 W06

23 © 2016 Gernot Heiser. Distributed under CC Attribution License

Address Mismatch Problem: Aliasing

•  Page aliased in different address spaces
–  AS1: VA12 = 1, AS2: VA12 = 0

•  One alias gets modified
–  in a write-back cache, other alias sees stale data
–  lost-update problem

Physical Memory

Cache

write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

2nd half of
cache, green

1st half of
cache, blue

COMP9242 S2/2016 W06

24 © 2016 Gernot Heiser. Distributed under CC Attribution License

Address Mismatch Problem: Re-Mapping

•  Unmap aliased page, remaining page has a dirty cache line
•  Re-use (remap) frame for a different page (in same or different AS)
•  Access new page

–  without mismatch, new write will overwrite old (hits same cache line)
–  with mismatch, alias may write back after remapping: “cache bomb”

Physical Memory

Cache

write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

COMP9242 S2/2016 W06

dirty

unmap

25 © 2016 Gernot Heiser. Distributed under CC Attribution License

Physical
Memory

Cache

write

DMA

DMA Consistency Problem

•  DMA (normally) uses physical addresses and bypasses cache
–  CPU access inconsistent with device access
–  need to flush cache before device write
–  need to invalidate cache before device read

You’ll have to
deal with this!

COMP9242 S2/2016 W06

26 © 2016 Gernot Heiser. Distributed under CC Attribution License

Avoiding Synonym Problems
•  Flush cache on context switch

–  doesn’t help for aliasing within address space!
•  Detect synonyms and ensure:

–  all read-only, or
–  only one synonym mapped

•  Restrict VM mapping so synonyms map to same cache set
–  eg on R4x00: ensure VA12 = PA12 – colour memory!

•  Hardware synonym detection
–  e.g. Cortex A9: store overlapping tag bits of both addresses & check
–  “physically”-addressed

COMP9242 S2/2016 W06

27 © 2016 Gernot Heiser. Distributed under CC Attribution License

Summary: VV Caches

þ  Fastest (don’t rely on TLB for retrieving data)
z  still need TLB lookup for protection
z … or alternative mechanism for providing protection
z  still need TLB lookup or physical tag for writeback

z  Suffer from synonyms and homonyms
z  requires flushing on context switches

z makes context switches expensive
z may even be required on kernel→user switch

•  … or guarantee no synonyms and homonyms
•  Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale
•  Used for I-caches on several other architectures (Alpha, Pentium 4)

COMP9242 S2/2016 W06

28 © 2016 Gernot Heiser. Distributed under CC Attribution License

Summary: Tagged VV Caches

•  Add ASID as part of tag
•  On access, compare with CPU’s ASID register
þ  Removes homonyms

þ  potentially better context-switching performance
z  ASID recycling still needs flush

z  Doesn’t solve synonym problem (but that’s less severe)
z  Doesn’t solve write-back problem

COMP9242 S2/2016 W06

29 © 2016 Gernot Heiser. Distributed under CC Attribution License

Summary: VP Caches

•  Medium speed
þ  lookup in parallel with address translation
z  tag comparison after address translation

þ  No homonym problem
z  Potential synonym problem
z  Bigger tags (cannot leave off set-number bits)

z  increases area, latency, power consumption
•  Used on most contemporary architectures for L1 cache

COMP9242 S2/2016 W06

30 © 2016 Gernot Heiser. Distributed under CC Attribution License

Summary: PP Caches
z  Slowest

z  requires result of address translation before lookup starts
þ  No synonym problem
þ  No homonym problem
þ  Easy to manage
þ  If small or highly associative index can be in parallel with translation

–  all index bits come from page offset
–  combines advantages of VV and PP cache
–  useful for on-core L1 cache (Itanium, recent x86)

þ  Cache can use bus snooping to receive/supply DMA data
þ  Usable as post-MMU cache with any architecture

For an in-depths coverage see [Wiggins 03]

COMP9242 S2/2016 W06

31 © 2016 Gernot Heiser. Distributed under CC Attribution License

CPU

Cache

…
Store A
…
Store B
…
Store A
…

Write Buffer

•  Store operations can take a long time to complete
–  eg if a cache line must be read or allocated

•  Can avoid stalling the CPU by buffering writes
•  Write buffer is a FIFO queue of incomplete stores

–  Also called store buffer or write-behind buffer
–  Typically between L1 and memory

•  Can also read intermediate values out of buffer
–  to service lead of a value that is still in write buffer
–  avoids unnecessary stalls of load operations

•  Implies that memory contents are temporarily stale
–  on a multiprocessor, CPUs see different order of writes!
–  ”weak store order”, to be revisited in SMP context

COMP9242 S2/2016 W06

32 © 2016 Gernot Heiser. Distributed under CC Attribution License

CPU

 I-Cache D-Cache

L2 Cache

L3 Cache

Memory

Write
Buffer

Cache Hierarchy

•  Hierarchy of caches to balance
memory accesses:
–  small, fast, virtually-indexed L1
–  large, slow, physically indexed L2–L5

•  Each level reduces and clusters traffic
•  L1 typically split into I- and D-caches

–  “Harvard architecture”
–  requirement of pipelining

•  Other levels tend to be unified
•  Chip multiprocessors usually share

on-chip L3, often L2

COMP9242 S2/2016 W06

33 © 2016 Gernot Heiser. Distributed under CC Attribution License

Sabre (Cortex A9) System Architecture

Freescale i.MX6

Cortex
A9 core

 L1 cache

 L2 cache

Cortex
A9 core

 L1 cache

Cortex
A9 core

 L1 cache

Cortex
A9 core

 L1 cache

Device Device

RAM

L1:
•  split 2×32 KiB, 4-way,
 32-B lines, “physical”
L2:
•  unified 1 MiB, 16-way
 32-B lines, physical

COMP9242 S2/2016 W06

34 © 2016 Gernot Heiser. Distributed under CC Attribution License

ASID VPN

VPN ASID PFN flags

flags PFN

Translation Lookaside Buffer (TLB)
•  TLB is a (VV) cache for page-table entries
•  TLB can be

–  hardware loaded,
transparent to OS

–  software loaded,
maintained by OS

•  TLB can be:
–  split: I- and D-TLBs
–  unified

COMP9242 S2/2016 W06

35 © 2016 Gernot Heiser. Distributed under CC Attribution License

TLB Issues: Associativity
•  First TLB (VAX-11/780 [Clark, Emer 85]) was 2-way associative
•  Most modern architectures have fully-associative TLBs
•  Exceptions:

–  Intel x86: 4-way
–  IBM RS/6000: 2-way

•  Reasons:
–  modern architectures tend to support multiple page sizes

o  “superpages”
o  better utilises TLB entries

–  TLB lookup done without knowing the page’s base address
–  set associativity loses speed advantage

•  x86 uses separate L1 TLBs for each page size
–  1 each I-TLB and D-TLB for 4 KiB and 2/4 MiB (4 L1 TLBs)
–  unified L2 TLB
–  all 4-way associative

COMP9242 S2/2016 W06

36 © 2016 Gernot Heiser. Distributed under CC Attribution License

TLB Size (I-TLB + D-TLB)

Not much growth in 30 years!

Architecture TLB Size
(i-TLB + d-TLB)

Page Size TLB Coverage
(base page)

VAX-11 64–256 0.5 KiB 32–128 KiB
ix86 32i + 64d 4 KiB + 4 MiB 128 KiB
MIPS 96–128 4 KiB – 16 MiB 384–512 KiB
SPARC 64 8 KiB – 4 MiB 512 KiB
Alpha 32–128i + 128d 8 KiB – 4 MiB 256 KiB
RS/6000 32i + 128d 4 KiB 256 KiB
Power-4 (G5) 128 4 KiB 512 KiB
PA-8000 96i + 96d 4 KiB – 64 MiB 384 KiB
Itanium 64i + 96d 4 KiB – 4 GiB 384 KiB
ARMv7 (A9) 64–128 4 KiB – 16 MiB 256–512 KiB
x86 (Nehalem) L1:128i+64d; L2:256 4 KiB + 2/4 MiB 1 MiB

COMP9242 S2/2016 W06

37 © 2016 Gernot Heiser. Distributed under CC Attribution License

TLB Size (I-TLB + D-TLB)
TLB coverage
•  Memory sizes are increasing
•  Number of TLB entries are roughly constant
•  Page sizes are steady

–  4 KiB, although larger on SPARC, Alpha
–  OS designers have trouble using superpages effectively

•  Consequences:
–  total amount of RAM mapped by TLB is not changing much
–  fraction of RAM mapped by TLB is shrinking dramatically!
–  Modern architectures have very low TLB coverage!

•  Also, many 64-bit RISC architectures have software-loaded TLBs
–  general increase in TLB miss handling cost

•  The TLB can become a bottleneck

COMP9242 S2/2016 W06

38 © 2016 Gernot Heiser. Distributed under CC Attribution License

Multi-Level TLBs
•  As with CPU caches,

multi-level translation caches
for better size/performance
tradeoffs

•  ARM Cortex A9:
–  F/A 32-entry I-TLB
–  F/A 32-entry D-TLB
–  2-way 64–128 entry L2 TLB

•  Intel Core i7:
–  F/A 8-entry I-TLB, holds 4KiB or 2/4MiB mappings
–  4-way, 64-entry D-TLB, holds 4KiB mappings, separate TLB for 1-GiB
–  8-way, 1024 entry L2 TLB, holds 4KiB or 2MiB mappings

CPU

L1 I-TLB

Unified L2 TLB

L1 D-TLB

COMP9242 S2/2016 W06

39 © 2016 Gernot Heiser. Distributed under CC Attribution License

Intel Core i7 (Haswell) Cache Structure

Source: Intel

COMP9242 S2/2016 W06

40 © 2016 Gernot Heiser. Distributed under CC Attribution License

Intel Haswell L3 Cache

Source: Intel

COMP9242 S2/2016 W06

