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Copyright Notice 
These slides are distributed under the Creative Commons 
Attribution 3.0 License 
 
•  You are free: 

–  to share—to copy, distribute and transmit the work 
–  to remix—to adapt the work 

•  under the following conditions: 
–  Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) 
as follows: 

“Courtesy of Gernot Heiser, UNSW Australia” 
 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode 
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The Memory Wall 
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Multicore offsets stagnant per-core performance with proliferation of cores 
•  Same effect on overall memory bandwidth 
•  Basic trend is unchanged 
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•  Cache is fast (1–5 cycle access time) memory sitting between fast registers 
and slow RAM (10–100s cycles access time) 

•  Holds recently-used data or instructions to save memory accesses 
•  Matches slow RAM access time to CPU speed if high hit rate (> 90%) 
•  Is hardware maintained and (mostly) transparent to software 
•  Sizes range from few KiB to several MiB. 
•  Usually a hierarchy of caches (2–5 levels),  
•  On contemporary processors generally on-chip 
 
Good overview of implications of caches for operating systems: [Schimmel 94] 

Registers Cache Main 
Memory Disk 

Caching 
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Cache Organization 

•  Data transfer unit between registers and L1 cache: ≤ 1 word (1–16B) 
•  Cache line is transfer unit between cache and RAM (or lower cache) 

–  typically 16–32 bytes, sometimes 128 bytes and more 
•  Line is also unit of storage allocation in cache 
•  Each line has associated control info: 

–  valid bit 
–  modified bit 
–  tag 

•  Cache improves memory access by: 
–  absorbing most reads (increases bandwidth, reduces latency) 
–  making writes asynchronous (hides latency) 
–  clustering reads and writes (hides latency) 
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CPU 
Virtual 
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Virtually 
Indexed 
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Address 
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Address 

Cache Access 

•  Virtually indexed: looked up by virtual address 
–  operates concurrently with address translation 

•  Physically indexed: looked up by physical address 
–  requires result of address translation 

•  Usually have hierarchy: L1 (closest to core), … Ln (closest to RAM) 
–  L1 may use virtual address, all others use physical only 
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•  The tag is used to distinguish lines of a set… 
•  Consists of high-order bits not used for indexing 

t1 

t s b 
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Byte # 

data tag 

tag 

Set # 

1 Set  

Cache Indexing 
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CPU 
Registers 

Main Memory Line 1 

Line 2 

Line 3 

Line 4 

Set 0 

Set 1 

Cache Indexing 

•  Address hashed to produce index of line set 
•  Associative lookup of line within set 
•  n lines per set: n-way set-associative cache 

–  typically n = 1 … 5, some embedded processors use 32–64 
–  n = 1 is called direct mapped 
–  n = ∞ is called fully associative (unusual for I/D caches) 

•  Hashing must be simple (complex hardware is slow) 
–  generally use least-significant bits of address (except L3 on recent x86) 
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Cache Indexing: Direct Mapped 
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tag(26) index(2) offset(4) 
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Cache Mapping Implications 
•  Multiple memory locations map to the same cache line 

•  Locations mapping to cache set i are said to be of colour i 
•  n-way associative cache can hold n lines of the same colour 
•  Types of cache misses (“the four Cs”): 

–  Compulsory miss: data cannot be in the cache (if infinite size) 
o  first access (after flush) 

–  Capacity miss: all cache entries are in use by other data 
o  would not miss on infinite-size cache 

–  Conflict miss: all lines of the correct colour are in use by other data 
o  would not miss on fully-associative cache 

–  Coherence miss: miss forced by hardware coherence protocol 

0 1 … n-1 … 

Cache 

RAM 

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1 

0 1 … n-1 
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Cache Replacement Policy 
•  Indexing (using address) points to specific line set 
•  On miss (all lines of set are valid): replace existing line 
•  Replacement strategy must be simple (hardware!) 

–  dirty bit determines whether line must be written back 
–  typical policies: 

o  LRU 
o  pseudo-LRU 
o  FIFO 
o  random 
o  toss clean 
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Cache Write Policy 
•  Treatment of store operations 

–  write back: Stores only update cache; 
memory is updated once dirty line is replaced (flushed) 
þ clusters writes 
z memory inconsistent with cache 
z multi-processor cache-coherency challenge 

–  write through: stores update cache and memory immediately 
þ memory is always consistent with cache 
z increased memory/bus traffic 

•  On store to a line not presently in cache (write miss): 
–  write allocate: allocate a cache line and store there 

o  typically requires reading line into cache first! 
–  no allocate: store directly to memory, bypassing the cache 

•  Typical combinations: 
–  write-back & write-allocate 
–  write-through & no allocate 
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Cache Addressing Schemes 
•  For simplicity assumed so far that cache only sees one type of 

address: virtual or physical 
•  However, indexing and tagging can use different addresses! 
•  Four possible addressing schemes: 

–  virtually-indexed, virtually-tagged (VV) cache 
–  virtually-indexed, physically-tagged (VP) cache 
–  physically-indexed, virtually-tagged (PV) cache 
–  physically-indexed, physically-tagged (PP) cache 

•  PV caches can make sense only with unusual MMU designs 
–  not considered any further 
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Virtually-Indexed, Virtually-Tagged Cache  
•  Also called virtually-addressed cache 
•  Various incorrect names in use: 

–  virtual cache 
–  virtual address cache 

•  Uses virtual addresses only 
•  Can operate concurrently 

with MMU 
•  Still needs MMU lookup 

for access rights 
•  Writeback needs PA 

–  TLB lookup? 
•  Used for on-core L1 
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Virtually-Indexed, Physically-Tagged Cache 
•  Virtual address for accessing line (lookup) 
•  Physical address for tagging 
•  Needs complete address translation 

for looking up retrieving data 
•  Indexing concurrent with MMU 

use MMU output for tag check 
•  Used for on-core L1 
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Physically-Indexed, Physically-Tagged Cache 
•  Only uses physical addresses 
•  Address translation result needed 

to begin lookup 
•  Only choice for Ln, n>1 
•  Note: page offset is invariant under 

address translation 
–  if index bits are a subset of 

the offset bits, PP cache 
lookup doesn’t need 
MMU result! 

–  VP=PP in this case; 
fast and suitable for 
on-core use (L1) 

–  This cache has 
single page colour 
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Cache Issues 
•  Caches are managed by hardware transparently to software 

–  OS doesn’t have to worry about them, right? 
•  Software-visible cache effects: 

–  performance 
–  homonyms: 

o  same address, different data 
o  can affect correctness! 

–  synonyms (aliases): 
o  different address, same data 
o  can affect correctness! 

Wrong! 
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Virtually-Indexed Cache Issues 
Homonyms – same name for different data: 
•  Problem: VA used for indexing is 

context-dependent 
–  same VA refers to different PAs 
–  tag does not uniquely identify data! 
–  wrong data may be accessed 
–  an issue for most OSes 

•  Homonym prevention: 
–  flush cache on each 

context switch 
–  force non-overlapping 

address-space layout 
o  single-address-space OS 

–  tag VA with address-space ID (ASID) 
o  makes VAs global 
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Virtually-Indexed Cache Issues 
Synonyms – multiple names for same data: 
•  Several VAs map to the same PA 

–  frame shared between ASs 
–  frame multiply mapped within AS 

•  May access stale data! 
–  same data cached in multiple lines 

o  If aliases differ in colour 
–  on write, one synonym updated 
–  read on other synonym 

returns old value 
–  physical tags don’t help! 
–  ASIDs don’t help! 

•  Are synonyms a problem? 
–  depends on page and cache size (colours) 
–  no problem for R/O data 

or I-caches 
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Example: MIPS R4x00 Synonyms  
•  ASID-tagged, on-chip VP cache 

–  16 KiB cache, 2-way set associative, 32 B line size 
–  4 KiB (base) page size 
–  size/associativity = 16/2 KiB = 8 KiB > page size (2 page colours) 

o  16 KiB / (32 B/line) = 512 lines = 256 sets ⇒ 8 index bits (12..5) 
o  overlap of tag bits and index bits, but from different addresses! 

•  Remember, index determines location of data in cache 
–  tag only confirms hit 
–  synonym problem iff VA12 ≠ VA’12 

–  similar issues on other processors where L1 cache has multiple colours 
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Address Mismatch Problem: Aliasing 

•  Page aliased in different address spaces 
–  AS1: VA12 = 1, AS2: VA12 = 0 

•  One alias gets modified 
–  in a write-back cache, other alias sees stale data 
–  lost-update problem 

Physical Memory 

Cache 

write 

Address Space 1 
Page 0x00181000 

Address Space 2 
Page 0x0200000 

2nd half of 
cache, green 

1st half of 
cache, blue 
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Address Mismatch Problem: Re-Mapping 

•  Unmap aliased page, remaining page has a dirty cache line 
•  Re-use (remap) frame for a different page (in same or different AS) 
•  Access new page 

–  without mismatch, new write will overwrite old (hits same cache line) 
–  with mismatch, alias may write back after remapping: “cache bomb” 

Physical Memory 

Cache 

write 

Address Space 1 
Page 0x00181000 

Address Space 2 
Page 0x0200000 
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Physical 
Memory 

Cache 

write 

DMA 

DMA Consistency Problem 

•  DMA (normally) uses physical addresses and bypasses cache 
–  CPU access inconsistent with device access 
–  need to flush cache before device write 
–  need to invalidate cache before device read 

You’ll have to 
deal with this! 
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Avoiding Synonym Problems 
•  Flush cache on context switch 

–  doesn’t help for aliasing within address space! 
•  Detect synonyms and ensure: 

–  all read-only, or 
–  only one synonym mapped 

•  Restrict VM mapping so synonyms map to same cache set 
–  eg on R4x00: ensure VA12 = PA12 – colour memory! 

•  Hardware synonym detection 
–  e.g. Cortex A9: store overlapping tag bits of both addresses & check 
–  “physically”-addressed 
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Summary: VV Caches 

þ  Fastest (don’t rely on TLB for retrieving data) 
z  still need TLB lookup for protection 
z … or alternative mechanism for providing protection 
z  still need TLB lookup or physical tag for writeback 

z  Suffer from synonyms and homonyms 
z  requires flushing on context switches 

z makes context switches expensive 
z may even be required on kernel→user switch  

•  … or guarantee no synonyms and homonyms 
•  Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale 
•  Used for I-caches on several other architectures (Alpha, Pentium 4) 
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Summary: Tagged VV Caches 

•  Add ASID as part of tag 
•  On access, compare with CPU’s ASID register 
þ  Removes homonyms 

þ  potentially better context-switching performance 
z  ASID recycling still needs flush 

z  Doesn’t solve synonym problem (but that’s less severe) 
z  Doesn’t solve write-back problem 
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Summary: VP Caches 

•  Medium speed 
þ  lookup in parallel with address translation 
z  tag comparison after address translation 

þ  No homonym problem 
z  Potential synonym problem 
z  Bigger tags (cannot leave off set-number bits) 

z  increases area, latency, power consumption 
•  Used on most contemporary architectures for L1 cache 
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Summary: PP Caches 
z  Slowest 

z  requires result of address translation before lookup starts 
þ  No synonym problem 
þ  No homonym problem 
þ  Easy to manage 
þ  If small or highly associative index can be in parallel with translation 

–  all index bits come from page offset 
–  combines advantages of VV and PP cache 
–  useful for on-core L1 cache (Itanium, recent x86) 

þ  Cache can use bus snooping to receive/supply DMA data 
þ  Usable as post-MMU cache with any architecture 

For an in-depths coverage see [Wiggins 03] 
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CPU 

Cache 

… 
Store A 
… 
Store B 
… 
Store A 
… 

Write Buffer 

•  Store operations can take a long time to complete 
–  eg if a cache line must be read or allocated 

•  Can avoid stalling the CPU by buffering writes 
•  Write buffer is a FIFO queue of incomplete stores 

–  Also called store buffer or write-behind buffer 
–  Typically between L1 and memory 

•  Can also read intermediate values out of buffer 
–  to service lead of a value that is still in write buffer 
–  avoids unnecessary stalls of load operations 

•  Implies that memory contents are temporarily stale 
–  on a multiprocessor, CPUs see different order of writes! 
–  ”weak store order”, to be revisited in SMP context 
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CPU 

 I-Cache D-Cache 

L2 Cache 

L3 Cache 

Memory 

Write 
Buffer 

Cache Hierarchy 

•  Hierarchy of caches to balance 
memory accesses: 
–  small, fast, virtually-indexed L1 
–  large, slow, physically indexed L2–L5 

•  Each level reduces and clusters traffic 
•  L1 typically split into I- and D-caches 

–  “Harvard architecture” 
–  requirement of pipelining 

•  Other levels tend to be unified 
•  Chip multiprocessors usually share  

on-chip L3, often L2 

COMP9242 S2/2016 W06 



33 © 2016 Gernot Heiser. Distributed under CC Attribution License 

Sabre (Cortex A9) System Architecture 

Freescale i.MX6 

Cortex 
A9 core 

 L1 cache 

 L2 cache 

Cortex 
A9 core 

 L1 cache 

Cortex 
A9 core 

 L1 cache 

Cortex 
A9 core 

 L1 cache 

Device Device 

RAM 

L1: 
•  split 2×32 KiB, 4-way, 
  32-B lines, “physical” 
L2: 
•  unified 1 MiB, 16-way 
  32-B lines, physical 
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ASID VPN 

VPN ASID PFN flags 

flags PFN 

Translation Lookaside Buffer (TLB) 
•  TLB is a (VV) cache for page-table entries 
•  TLB can be 

–  hardware loaded, 
transparent to OS 

–  software loaded, 
maintained by OS 

•  TLB can be: 
–  split: I- and D-TLBs 
–  unified 
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TLB Issues: Associativity 
•  First TLB (VAX-11/780 [Clark, Emer 85]) was 2-way associative 
•  Most modern architectures have fully-associative TLBs 
•  Exceptions: 

–  Intel x86: 4-way 
–  IBM RS/6000: 2-way 

•  Reasons: 
–  modern architectures tend to support multiple page sizes 

o  “superpages” 
o  better utilises TLB entries 

–  TLB lookup done without knowing the page’s base address 
–  set associativity loses speed advantage 

•  x86 uses separate L1 TLBs for each page size 
–  1 each I-TLB and D-TLB for 4 KiB and 2/4 MiB (4 L1 TLBs) 
–  unified L2 TLB 
–  all 4-way associative 
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TLB Size (I-TLB + D-TLB) 

Not much growth in 30 years! 

Architecture TLB Size 
(i-TLB + d-TLB) 

Page Size TLB Coverage 
(base page) 

VAX-11 64–256 0.5 KiB 32–128 KiB 
ix86 32i + 64d 4 KiB + 4 MiB 128 KiB 
MIPS 96–128 4 KiB – 16 MiB 384–512 KiB 
SPARC 64 8 KiB – 4 MiB 512 KiB 
Alpha 32–128i + 128d 8 KiB – 4 MiB 256 KiB 
RS/6000 32i + 128d 4 KiB 256 KiB 
Power-4 (G5) 128 4 KiB 512 KiB 
PA-8000 96i + 96d 4 KiB – 64 MiB 384 KiB 
Itanium 64i + 96d 4 KiB – 4 GiB 384 KiB 
ARMv7 (A9) 64–128 4 KiB – 16 MiB 256–512 KiB 
x86 (Nehalem) L1:128i+64d; L2:256 4 KiB + 2/4 MiB 1 MiB 
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TLB Size (I-TLB + D-TLB) 
TLB coverage 
•  Memory sizes are increasing 
•  Number of TLB entries are roughly constant 
•  Page sizes are steady  

–  4 KiB, although larger on SPARC, Alpha 
–  OS designers have trouble using superpages effectively 

•  Consequences: 
–  total amount of RAM mapped by TLB is not changing much 
–  fraction of RAM mapped by TLB is shrinking dramatically! 
–  Modern architectures have very low TLB coverage! 

•  Also, many 64-bit RISC architectures have software-loaded TLBs 
–  general increase in TLB miss handling cost 

•  The TLB can become a bottleneck 
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Multi-Level TLBs 
•  As with CPU caches, 

multi-level translation caches 
for better size/performance 
tradeoffs 

•  ARM Cortex A9: 
–  F/A 32-entry I-TLB 
–  F/A 32-entry D-TLB 
–  2-way 64–128 entry L2 TLB 

•  Intel Core i7: 
–  F/A 8-entry I-TLB, holds 4KiB or 2/4MiB mappings 
–  4-way, 64-entry D-TLB, holds 4KiB mappings, separate TLB for 1-GiB 
–  8-way, 1024 entry L2 TLB, holds 4KiB or 2MiB mappings 

CPU 

L1 I-TLB 

Unified L2 TLB 

L1 D-TLB 
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Intel Core i7 (Haswell) Cache Structure 

Source: Intel  
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Intel Haswell L3 Cache 

Source: Intel  
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