
1

SMP, Multicore, Memory
Ordering & Locking

These slides are made distributed under the Creative Commons Attribution 3.0 License, unless
otherwise noted on individual slides.

You are free:
to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution — You must attribute the work (but not in any way that suggests that the author
endorses you or your use of the work) as follows:

“Courtesy of Kevin Elphinstone, UNSW”

The complete license text can be found at http://creativecommons.org/licenses/by/3.0/legalcode

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

CPU performance increases are
slowing

Computer Architecture A Quantitative Approach Fifth Edition John L. Hennessy, David A.
Patterson

Multiprocessor System
• A single CPU can only go so fast

– Use more than one CPU to improve performance
– Assumes

o Workload can be parallelised
o Workload is not I/O-bound or memory-bound

Amdahl’s Law
• Given:

– Parallelisable fraction P
– Number of processor N
– Speed up S

• ܵ ܰ = ଵ

ଵି௉ ାುಿ

• ܵ ∞ = ଵ
ଵି௉

• Parallel computing takeaway:
– Useful for small numbers of CPUs (N)
– Or, high values of P

o Aim for high P values by design

0

5

10

15

20

25

0 5 10 15 20 25 30

Speedup vs. CPUs

0.5 0.9 0.99

• Classic symmetric
multiprocessor (SMP)
– Uniform Memory Access

o Access to all memory occurs
at the same speed for all
processors.

– Processors with local
caches
o Separate cache hierarchy
 Cache coherency issues

Types of Multiprocessors (MPs)

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Cache

CPU
Cache

CPU Main
Memory

Bus

http://creativecommons.org/licenses/by/3.0/legalcode

2

Cache Coherency
• What happens if one CPU writes to address 0x1234 (and

it is stored in its cache) and another CPU reads from the
same address (and gets what is in its cache)?
– Can be thought of as managing replication and migration of data

between CPUs

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Cache

CPU
Cache

CPU Main
Memory

Bus

Memory Model
• A read produces the result of the last write to a

particular memory location?
– Approaches that avoid the issue in software also

avoid exploiting replication for cooperative parallelism
o E.g., no mutable shared data.

– For classic SMP a hardware solution is used
o Write-through caches
o Each CPU snoops bus activity to invalidate stale lines
o Reduces cache effectiveness – all writes go out to the bus.

 Longer write latency
 Reduced bandwidth

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Cache

CPU
Cache

CPU Main
Memory

• NUMA MP
– Non-uniform memory access

o Access to some parts of
memory is faster for some
processors than other parts
of memory

– Provides high-local
bandwidth and reduces
bus contention
o Assuming locality of access

Types of Multiprocessors (MPs)

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Cache

CPU

Cache

CPU

Main
Memory

Main
Memory

Interconnect

Cache Coherence
• Snooping caches assume

– write-through caches
– cheap “broadcast” to all CPUs

• Many alternative cache coherency models
– They improve performance by tackling above assumptions
– We’ll examine MESI (four state)
– ‘Memory bus’ becomes message passing system between caches

Example Coherence Protocol MESI
Each cache line is in one of four states

• Modified (M)
– The line is valid in the cache and in only this cache.
– The line is modified with respect to system memory—that is, the modified data in

the line has not been written back to memory.
• Exclusive (E)

– The addressed line is in this cache only.
– The data in this line is consistent with system memory.

• Shared (S)
– The addressed line is valid in the cache and in at least one other cache.
– A shared line is always consistent with system memory. That is, the shared state

is shared-unmodified; there is no shared-modified state.
• Invalid (I)

– This state indicates that the addressed line is not resident in the cache and/or
any data contained is considered not useful.

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

3

Example

Cache

CPU

Cache

CPU

Main Memory

MESI (with snooping/broadcast)

• Events
RH = Read Hit
RMS = Read miss, shared
RME = Read miss, exclusive
WH = Write hit
WM = Write miss
SHR = Snoop hit on read
SHI = Snoop hit on invalidate
LRU = LRU replacement

• Bus Transactions
Push = Write cache line back to

memory
Invalidate = Broadcast invalidate
Read = Read cache line from

memory
• Performance improvement via

write-back caching
– Less bus traffic

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

• Each memory block has a
home node

• Home node keeps directory of
caches that have a copy

– E.g., a bitmap of processors
per cache line

• Pro
– Invalidation/update

messages can be directed
explicitly
o No longer rely on

broadcast/snooping

• Con
– Requires more storage to

keep directory
o E.g. each 256 bits of

memory (cache line)
requires 32 bits (processor
mask) of directory

Directory-based coherence

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Computer Architecture A Quantitative Approach Fifth Edition John L. Hennessy, David A.
Patterson

Example

Cache

CPU
Cache

CPU

Main
Memory

Cache

CPU
Cache

CPU

• Chip Multiprocessor
(CMP)
– per-core L1 caches
– shared lower on-chip caches
– usually called “multicore”
– “reduced” cache coherency

issues
o Between L1’s, L2 shared.

Chip Multiprocessor (CMP)

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Bus

L1

CPU
core

L1

CPU
core Main

Memory

L2

CPU Package

18

 Cache lines can
migrate between L1
caches belonging to
different cores
without involving the
L2

 Clean lines – DDI
(Direct Data
Intervention)

 Dirty Lines – ML
(Migratory Lines)

ARM MPCore: Cache-to-Cache Transfers

4

19

Cache to Cache Latency

 Significant benefits
achievable if the
working set of the
application partitioned
between the cores can
be contained within the
sum of their caches

 Helpful for streaming
data between cores
 may be used in

conjunction with
interrupts between
cores

 Though dirty lines have higher
latency they still have  50%
performance benefit

• D.M. Tullsen, S.J. Eggers, and H.M. Levy, "Simultaneous
Multithreading: Maximizing On-Chip Parallelism," In 22nd
Annual International Symposium on Computer
Architecture, June, 1995

• replicated functional units, register state
• interleaved execution of several threads

– As opposed to extracting limited parallelism from
instruction stream.

• fully shared cache hierarchy
• no cache coherency issues
• (called hyperthreading on x86)

Simultaneous multithreading (SMT)

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

L1 Cache

CPU Core

HW thread HW thread

Summary
• Hardware-based cache coherency:

– provide a consistent view of memory across the machine.
– Read will get the result of the last write to the memory hierarchy

Memory Ordering

• Example: a tail of a critical section
/* assuming lock already held */

/* counter++ */

load r1, counter

add r1, r1, 1

store r1, counter

/* unlock(mutex) */

store zero, mutex

• Relies on all CPUs seeing update of counter before
update of mutex

• Depends on assumptions about ordering of stores to
memory

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Cache

CPU
Cache

CPU Main
Memory

Bus

Memory Models: Strong Ordering
• Sequential consistency

o the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order
specified by its program

• Traditionally used by many architectures
• Assume X = Y = 0 initially

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

CPU 0
store 1, X
load r2, Y

CPU 1
store 1, Y
load r2, X

Example

Cache

CPU 0

Cache

CPU 1

Main Memory

5

Potential interleavings
• At least one CPU must load the other's new

value
– Forbidden result: X=0,Y=0

store 1, X
load r2, Y
store 1, Y
load r2, X
X=1,Y=0

store 1, X
store 1, Y
load r2, Y
load r2, X
X=1,Y=1

store 1, Y
load r2, X
store 1, X
load r2, Y
X=0,Y=1

store 1, Y
store 1, X
load r2, X
load r2, Y
X=1,Y=1

store 1, X
store 1, Y
load r2, X
load r2, Y
X=1,Y=1

store 1, Y
store 1, X
load r2, Y
load r2, X
X=1,Y=1

Realistic Memory Models
• Modern hardware features can interfere with store order:

– write buffer (or store buffer or write-behind buffer)
– instruction reordering (out-of-order execution)
– superscalar execution and pipelining

• Each CPU/core keeps its own data consistent, but how
is it viewed by others?

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Write-buffers and SMP
• Stores go to write buffer to hide memory

latency
– And cache invalidates

• Loads read from write buffer if possible

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

CPU0

Cache

Store C
…

Store B
…

Store A
….

CPU 0
store r1, A
store r2, B
store r3, C
load r4, A

CPU 1
CPU 0

store r1, A
store r2, B
store r3, C

Write-buffers and SMP
• When the buffer eventually drains, what order

does CPU1 see CPU0’s memory updates?

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

What happens in our example?

CPU0

Cache

Store C
…

Store B
…

Store A
….

Total Store Ordering (e.g. x86)
• Stores are guaranteed to occur in FIFO order

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

CPU0

Cache

Store C
…

Store B
…

Store A
….

CPU 1 sees
A=1
B=2
C=3

CPU 0
store 1, A
store 2, B
store 3, C

6

Total Store Ordering (e.g. x86)
• Stores are guaranteed to occur in FIFO order

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

CPU0

Cache

…
Store
mutex

…
Store
count
….

CPU 1 sees
count updated

mutex = 0

/* counter++ */
load r1, count
add r1, r1, 1
store r1, counter

/* unlock(mutex) */
store zero, mutex

Total Store Ordering (e.g. x86)
• Assume X = Y = 0 initially

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

What is the problem here?

CPU 0
store 1, X
load r2, Y

CPU 1
store 1, Y
load r2, X

CPU0

Cache

…
Store X

….

CPU1

Cache

…
Store Y

….

Total Store Ordering (e.g. x86)
• Stores are buffered in write-buffer and

don’t appear on other CPU in time.
• Can get X=0, Y=0!!!!
• Loads can “appear” re-ordered with

preceding stores

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

load r2, Y
load r2, X
store 1, X
store 1, Y

CPU 0
store 1, X
load r2, Y

CPU 1
store 1, Y
load r2, X

CPU0

Cache

…
Store X

….

CPU1

Cache

…
Store Y

….

Memory “fences” or “barriers”
• The provide a “fence” between

instructions to prevent apparent re-
ordering

• Effectively, they drain the local CPU’s
write-buffer before proceeding.

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

CPU 0
store 1, X
fence
load r2, Y

CPU 1
store 1, Y
fence
load r2, X

CPU0

Cache

…
Store X

….

CPU1

Cache

…
Store Y

….

Total Store Ordering
• Stores are guaranteed to occur in FIFO order
• Atomic operations?

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

• Need hardware support, e.g.
• atomic swap
• test & set
• load-linked + store-conditional

• Stall pipeline and drain (and bypass) write buffer
• Ensures addr1 held exclusively

CPU 0
ll r1, addr1
sc r1, addr1

CPU 1
ll r1, addr1
sc r2, addr1

CPU

Cache

Store A
…

Store B
…

Store A
….

Partial Store Ordering (e.g. ARM MPcore)

• All stores go to write buffer
• Loads read from write buffer if possible
• Redundant stores are cancelled or merged

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

• Stores can appear to overtake (be re-ordered) other
stores
• Need to use memory barrier

CPU

Cache

Store A
…

Store B
…

Store A
….

CPU 1 sees
addr2 = VAL
addr1 = IDLE

CPU 0
store BUSY, addr1
store VAL, addr2
store IDLE, addr1

7

Partial Store Ordering (e.g. ARM MPcore)

• The barriers prevent preceding stores
appearing after successive stores

– Note: Reality is a little more complex (read barriers,
write barriers), but principle similar.

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

• Store to counter can overtake store to mutex
• i.e. update move outside the lock

• Need to use memory barrier
• Failure to do so will introduce subtle bugs:

• Critical section “leaking” outside the lock

load r1, counter
add r1, r1, 1
store r1, counter
barrier
store zero, mutex

CPU

Cache

Store A
…

Store B
…

Store A
….

MP Hardware Take Away
• Each core/cpu sees sequential execution of own

code
• Other cores see execution affected by

– Store order and write buffers
– Cache coherence model
– Out-of-order execution

• Systems software needs understand:
– Specific system (cache, coherence, etc..)
– Synch mechanisms (barriers, test_n_set, load_linked

– store_cond).
…to build cooperative, correct, and scalable
parallel code

MP Hardware Take Away
• Existing sync primitives (e.g. locks) will have

appropriate fences/barriers in place
– In practice, correctly synchronised code can ignore memory

model.
• However, racey code, i.e. code that updates shared

memory outside a lock (e.g. lock free algorithms) must
use fences/barriers.
– You need a detailed understanding of the memory coherence

model.
– Not easy, especially for partial store order (ARM).

Memory ordering for various Architectures
Type Alpha ARMv7 PA-RISC POWER SPARC

RMO
SPARC
PSO

SPARC
TSO x86 x86

oostore AMD64 IA-64 zSeries

Loads
reordered
after loads

Y Y Y Y Y Y Y

Loads
reordered
after stores

Y Y Y Y Y Y Y

Stores
reordered
after stores

Y Y Y Y Y Y Y Y

Stores
reordered
after loads

Y Y Y Y Y Y Y Y Y Y Y Y

Atomic
reordered
with loads

Y Y Y Y Y

Atomic
reordered
with stores

Y Y Y Y Y Y

Dependent
loads
reordered

Y

Incoherent
instruction
cache
pipeline

Y Y Y Y Y Y Y Y Y Y

Concurrency Observations
• Locking primitives require exclusive access to the “lock”

– Care required to avoid excessive bus/interconnect traffic

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Kernel Locking
• Several CPUs can be executing kernel code

concurrently.
• Need mutual exclusion on shared kernel data.
• Issues:

– Lock implementation
– Granularity of locking (i.e. parallelism)

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

8

Mutual Exclusion Techniques
• Disabling interrupts (CLI — STI).

– Unsuitable for multiprocessor systems.
• Spin locks.

– Busy-waiting wastes cycles.
• Lock objects (locks, semaphores).

– Flag (or a particular state) indicates object is locked.
– Manipulating lock requires mutual exclusion.

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Hardware Provided Locking Primitives

• int test_and_set(lock *);
• int compare_and_swap(int c,

int v, lock *);
• int exchange(int v, lock *)
• int atomic_inc(lock *)

• v = load_linked(lock *) / bool
store_conditional(int, lock *)
– LL/SC can be used to implement all of the above

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Spin locks
void lock (volatile lock_t *l) {

while (test_and_set(l)) ;
}
void unlock (volatile lock_t *l) {

*l = 0;
}
• Busy waits. Good idea?

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Spin Lock Busy-waits Until Lock
Is Released

• Stupid on uniprocessors, as nothing will change while
spinning.
– Should release (yield) CPU immediately.

• Maybe ok on SMPs: locker may execute on other CPU.
– Minimal overhead (if contention low).
– Still, should only spin for short time.

• Generally restrict spin locking to:
– short critical sections,
– unlikely to (or preferably can’t) be contended by the same CPU.
– local contention can be prevented

o by design
o by turning off interrupts

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Spinning versus Switching
– Blocking and switching

o to another process takes time
 Save context and restore another
 Cache contains current process not new

» Adjusting the cache working set also takes time
 TLB is similar to cache

o Switching back when the lock is free encounters the same
again

– Spinning wastes CPU time directly
• Trade off

– If lock is held for less time than the overhead of
switching to and back

 It’s more efficient to spin

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Spinning versus Switching
• The general approaches taken are

– Spin forever
– Spin for some period of time, if the lock is not

acquired, block and switch
oThe spin time can be
 Fixed (related to the switch overhead)
 Dynamic

» Based on previous observations of the lock
acquisition time

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

9

Interrupt Disabling
• Assume no local contention by design, is disabling

interrupt important?

• Hint: What happens if a lock holder is preempted (e.g., at
end of its timeslice)?

• All other processors spin until the lock holder is re-
scheduled

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Alternative to spinning:
Conditional Lock (TryLock)

bool cond_lock (volatile lock t *l) {
if (test_and_set(l))

return FALSE; //couldn’t lock
else

return TRUE; //acquired lock
}

• Can do useful work if fail to acquire lock.
• But may not have much else to do.
• Starvation: May never get lock!

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Another alternative to spinining.

void mutex lock (volatile lock t *l) {
while (1) {

for (int i=0; i<MUTEX N; i++)
if (!test and set(l))

return;
yield();

}
}

• Spins for limited time only
– assumes enough for other CPU to exit critical section

• Useful if critical section is shorter than N iterations.
• Starvation possible.

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Common Multiprocessor Spin Lock
void mp_spinlock (volatile lock t *l) {

cli(); // prevent preemption
while (test and set(l)) ; // lock

}
void mp unlock (volatile lock t *l) {

*l = 0;
sti();

}

• Only good for short critical sections
• Does not scale for large number of processors
• Relies on bus-arbitrator for fairness
• Not appropriate for user-level
• Used in practice in small SMP systems

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Need a more systematic
analysis

Thomas Anderson, “The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel
and Distributed Systems, Vol 1, No. 1, 1990

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Compares Simple Spinlocks
• Test and Set

void lock (volatile lock_t *l) {
while (test_and_set(l)) ;

}

• Test and Test and Set

void lock (volatile lock_t *l) {
while (*l == BUSY || test_and_set(l)) ;

}

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

10

test_and_test_and_set LOCK
• Avoid bus traffic contention caused by test_and_set until it is likely to succeed
• Normal read spins in cache
• Can starve in pathological cases

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Benchmark
for i = 1 .. 1,000,000 {

lock(l)
crit_section()
unlock()
compute()

}

• Compute chosen from uniform random
distribution of mean 5 times critical section

• Measure elapsed time on Sequent Symmetry
(20 CPU 30386, coherent write-back invalidate
caches)

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Results
• Test and set performs poorly once there is enough CPUs

to cause contention for lock
– Expected

• Test and Test and Set performs better
– Performance less than expected
– Still significant contention on lock when CPUs notice release and

all attempt acquisition
• Critical section performance degenerates

– Critical section requires bus traffic to modify shared structure
– Lock holder competes with CPU that missed as they test and set

o lock holder is slower
– Slower lock holder results in more contention

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Idea
• Can inserting delays reduce bus traffic and

improve performance
• Explore 2 dimensions

– Location of delay
o Insert a delay after release prior to attempting acquire
o Insert a delay after each memory reference

– Delay is static or dynamic
o Static – assign delay “slots” to processors

 Issue: delay tuned for expected contention level
o Dynamic – use a back-off scheme to estimate contention

 Similar to ethernet
 Degrades to static case in worst case.

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Examining Inserting Delays

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

11

Queue Based Locking
• Each processor inserts itself into a waiting queue

– It waits for the lock to free by spinning on its own
separate cache line

– Lock holder frees the lock by “freeing” the next
processors cache line.

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Results

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Results
• Static backoff has higher overhead when backoff

is inappropriate
• Dynamic backoff has higher overheads when

static delay is appropriate
– as collisions are still required to tune the backoff time

• Queue is better when contention occurs, but has
higher overhead when it does not.
– Issue: Preemption of queued CPU blocks rest of

queue (worse than simple spin locks)

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

• John Mellor-Crummey and Michael Scott, “Algorithms for
Scalable Synchronisation on Shared-Memory
Multiprocessors”, ACM Transactions on Computer
Systems, Vol. 9, No. 1, 1991

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

MCS Locks
• Each CPU enqueues its own private lock variable into a queue and

spins on it
– No contention

• On lock release, the releaser unlocks the next lock in the queue
– Only have bus contention on actual unlock
– No starvation (order of lock acquisitions defined by the list)

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

MCS Lock
• Requires

– compare_and_swap()
– exchange()

oAlso called fetch_and_store()

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

12

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Sample MCS code for ARM MPCore

void mcs_acquire(mcs_lock *L, mcs_qnode_ptr I)
{

I->next = NULL;
MEM_BARRIER;
mcs_qnode_ptr pred = (mcs_qnode*) SWAP_PTR(L, (void *)I);
if (pred == NULL)
{ /* lock was free */

MEM_BARRIER;
return;

}
I->waiting = 1; // word on which to spin
MEM_BARRIER;
pred->next = I; // make pred point to me

}

Selected Benchmark
• Compared

– test and test and set
– Anderson’s array based queue
– test and set with exponential back-off
– MCS

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Confirmed Trade-off
• Queue locks scale well but have higher overhead
• Spin Locks have low overhead but don’t scale well
• What do we use?

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

13

• Beng-Hong Lim and Anant Agarwal, “Reactive
Synchronization Algorithms for Multiprocessors”,
ASPLOS VI, 1994

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Idea
• Can we dynamically switch locking methods to

suit the current contention level???

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Issues
• How do we determine which protocol to use?

– Must not add significant cost
• How do we correctly and efficiently switch protocols?
• How do we determine when to switch protocols?

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Protocol Selection
• Keep a “hint”
• Ensure both TTS and MCS lock a never free at the same

time
– Only correct selection will get the lock
– Choosing the wrong lock with result in retry which can get it right

next time
– Assumption: Lock mode changes infrequently

o hint cached read-only
o infrequent protocol mismatch retries

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

14

Changing Protocol
• Only lock holder can switch to avoid race conditions

– It chooses which lock to free, TTS or MCS.

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

When to change protocol
• Use threshold scheme

– Repeated acquisition failures will switch mode to queue
– Repeated immediate acquisition will switch mode to TTS

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

Results

© Kevin Elphinstone. Distributed under Creative Commons
Attribution License

The multicore evolution and
operating systems

Frans Kaashoek

Joint work with: Silas Boyd-Wickizer, Austin T. Clements,
Yandong Mao, Aleksey Pesterev, Robert Morris, and Nickolai

Zeldovich

MIT

• Non-scalable locks are dangerous.
Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. In the
Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.

How well does Linux scale?

● Experiment:
● Linux 2.6.35-rc5 (relatively old, but problems are
representative of issues in recent kernels too)
● Select a few inherent parallel system applications
● Measure throughput on different # of cores
● Use tmpfs to avoid disk bottlenecks

● Insight 1: Short critical sections can lead to
sharp performance collapse

15

Off-the-shelf 48-core server (AMD)
DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

● Cache-coherent and non-uniform access
● An approximation of a future 48-core chip

Poor scaling on stock Linux kernel
48

perfect scaling 44

40

36

32

28

24

20

16

12

8
terrible scaling

4

0
memcached PostgreSQL Psearchy

Exim Apache gmake Metis

Y-axis: (throughput with 48 cores) / (throughput with one core)

Exim on stock Linux: collapse
12000

Throughput

10000

8000

6000

4000

2000

0
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

Exim on stock Linux: collapse
12000

Throughput

10000

8000

6000

4000

2000

0
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

Exim on stock Linux: collapse
12000 15

Throughput
Kernel time

10000
12

8000

9

6000

6

4000

3
2000

0 0
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

Oprofile shows an obvious problem

40 cores:
10000 msg/sec

48 cores:
4000 msg/sec

samples % app name
2616 7.3522 vmlinux
2329 6.5456 vmlinux
2197 6.1746 vmlinux
1488 4.1820 vmlinux
1348 3.7885 vmlinux
1182 3.3220 vmlinux
966 2.7149 vmlinux

samples % app name
13515 34.8657 vmlinux
2002 5.1647 vmlinux
1661 4.2850 vmlinux
1497 3.8619 vmlinux
1026 2.6469 vmlinux
914 2.3579 vmlinux
896 2.3115 vmlinux

symbol name
radix_tree_lookup_slot
unmap_vmas
filemap_fault
__do_fault
copy_page_c
unlock_page
page_fault

symbol name
lookup_mnt
radix_tree_lookup_slot
filemap_fault
unmap_vmas
__do_fault
atomic_dec
unlock_page

16

Oprofile shows an obvious problem

40 cores:
10000 msg/sec

48 cores:
4000 msg/sec

samples % app name
2616 7.3522 vmlinux
2329 6.5456 vmlinux
2197 6.1746 vmlinux
1488 4.1820 vmlinux
1348 3.7885 vmlinux
1182 3.3220 vmlinux
966 2.7149 vmlinux

samples % app name
13515 34.8657 vmlinux
2002 5.1647 vmlinux
1661 4.2850 vmlinux
1497 3.8619 vmlinux
1026 2.6469 vmlinux
914 2.3579 vmlinux
896 2.3115 vmlinux

symbol name
radix_tree_lookup_slot
unmap_vmas
filemap_fault
__do_fault
copy_page_c
unlock_page
page_fault

symbol name
lookup_mnt
radix_tree_lookup_slot
filemap_fault
unmap_vmas
__do_fault
atomic_dec
unlock_page

Oprofile shows an obvious problem
samples % app name symbol name
2616 7.3522 vmlinux radix_tree_lookup_slot
2329 6.5456 vmlinux unmap_vmas

40 cores: 2197 6.1746 vmlinux filemap_fault
10000 msg/sec 1488 4.1820 vmlinux __do_fault

1348 3.7885 vmlinux copy_page_c
1182 3.3220 vmlinux unlock_page
966 2.7149 vmlinux page_fault

samples % app name symbol name
13515 34.8657 vmlinux lookup_mnt

48 cores:
4000 msg/sec

2002 5.1647 vmlinux
1661 4.2850 vmlinux
1497 3.8619 vmlinux
1026 2.6469 vmlinux
914 2.3579 vmlinux
896 2.3115 vmlinux

radix_tree_lookup_slot
filemap_fault
unmap_vmas
__do_fault
atomic_dec
unlock_page

Bottleneck: reading mount table
● Delivering an email calls sys_open

● sys_open calls

struct vfsmount *lookup_mnt(struct path *path)
{

struct vfsmount *mnt;
spin_lock(&vfsmount_lock);
mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

Bottleneck: reading mount table

● sys_open calls:
struct vfsmount *lookup_mnt(struct path *path)
{

struct vfsmount *mnt;
spin_lock(&vfsmount_lock);
mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

Bottleneck: reading mount table

● sys_open calls:
struct vfsmount *lookup_mnt(struct path *path)
{

struct vfsmount *mnt;
spin_lock(&vfsmount_lock);
mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

Serial section is short. Why does
it cause a scalability bottleneck?

What causes the sharp
performance collapse?

● Linux uses ticket spin locks, which are non-
scalable

● So we should expect collapse [Anderson 90]

● But why so sudden, and so sharp, for a short
section?

● Is spin lock/unlock implemented incorrectly?
● Is hardware cache-coherence protocol at fault?

17

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

500 cycles

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

18

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Previous lock holder notifies
next lock holder after

sending out N/2 replies

Why collapse with short sections?

● Arrival rate is proportional to # non-waiting cores
● Service time is proportional to # cores waiting (k)

● As k increases, waiting time goes up
● As waiting time goes up, k increases

● System gets stuck in states with many waiting cores

Short sections result in collapse

● Experiment: 2% of time spent in critical section
● Critical sections become “longer” with more cores
● Lesson: non-scalable locks fine for long sections

Avoiding lock collapse

● Unscalable locks are fine for long sections
● Unscalable locks collapse for short sections

● Sudden sharp collapse due to “snowball” effect
● Scalable locks avoid collapse altogether

● But requires interface change

19

Scalable lock scalability

● It doesn't matter much which one
● But all slower in terms of latency

Avoiding lock collapse
is not enough to scale

● “Scalable” locks don't make the kernel scalable
● Main benefit is avoiding collapse: total throughput
will not be lower with more cores
● But, usually want throughput to keep increasing with
more cores

