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CPU performance increases are 
slowing

Computer Architecture A Quantitative Approach Fifth Edition John L. Hennessy, David A. 
Patterson

Multiprocessor System
• A single CPU can only go so fast

– Use more than one CPU to improve performance
– Assumes

o Workload can be parallelised
o Workload is not I/O-bound or memory-bound

Amdahl’s Law
• Given:

– Parallelisable fraction P
– Number of processor N
– Speed up S

• ܵ ܰ = ଵ

ଵି௉ ାುಿ

• ܵ ∞ = ଵ
ଵି௉

• Parallel computing takeaway:
– Useful for small numbers of CPUs (N)
– Or, high values of P

o Aim for high P values by design

0

5

10

15

20

25

0 5 10 15 20 25 30

Speedup vs. CPUs

0.5 0.9 0.99

• Classic symmetric 
multiprocessor (SMP)
– Uniform Memory Access 

o Access to all memory occurs 
at the same speed for all 
processors.  

– Processors with local 
caches
o Separate cache hierarchy
 Cache coherency issues

Types of Multiprocessors (MPs)

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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Cache Coherency
• What happens if one CPU writes to address 0x1234 (and 

it is stored in its cache) and another CPU reads from the 
same address (and gets what is in its cache)?
– Can be thought of as managing replication and migration of data 

between CPUs

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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Memory Model
• A read produces the result of the last write to a

particular memory location?
– Approaches that avoid the issue in software also 

avoid exploiting replication for cooperative parallelism
o E.g., no mutable shared data.

– For classic SMP a hardware solution is used
o Write-through caches
o Each CPU snoops bus activity to invalidate stale lines
o Reduces cache effectiveness – all writes go out to the bus.

 Longer write latency
 Reduced bandwidth

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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• NUMA MP
– Non-uniform memory access

o Access to some parts of 
memory is faster for some 
processors than other parts 
of memory

– Provides high-local 
bandwidth and reduces 
bus contention
o Assuming locality of access

Types of Multiprocessors (MPs)

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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Cache Coherence
• Snooping caches assume

– write-through caches
– cheap “broadcast” to all CPUs 

• Many alternative cache coherency models
– They improve performance by tackling above assumptions
– We’ll examine MESI (four state)
– ‘Memory bus’ becomes message passing system between caches

Example Coherence Protocol  MESI
Each cache line is in one of four states

• Modified (M) 
– The line is valid in the cache and in only this cache.
– The line is modified with respect to system memory—that is, the modified data in 

the line has not been written back to memory.
• Exclusive (E)

– The addressed line is in this cache only. 
– The data in this line is consistent with system memory.

• Shared (S)
– The addressed line is valid in the cache and in at least one other cache. 
– A shared line is always consistent with system memory. That is, the shared state 

is shared-unmodified; there is no shared-modified state.
• Invalid (I)

– This state indicates that the addressed line is not resident in the cache and/or 
any data contained is considered not useful.

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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Example

Cache

CPU

Cache

CPU

Main Memory

MESI (with snooping/broadcast)

• Events
RH = Read Hit
RMS = Read miss, shared
RME = Read miss, exclusive
WH = Write hit
WM = Write miss
SHR = Snoop hit on read
SHI = Snoop hit on invalidate
LRU = LRU replacement

• Bus Transactions
Push = Write cache line back to 

memory
Invalidate = Broadcast invalidate
Read = Read cache line from 

memory
• Performance improvement via 

write-back caching
– Less bus traffic

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

• Each memory block has a 
home node

• Home node keeps directory of 
caches that have a copy

– E.g., a bitmap of processors 
per cache line

• Pro
– Invalidation/update 

messages can be directed 
explicitly
o No longer rely on 

broadcast/snooping

• Con
– Requires more storage to 

keep directory
o E.g. each 256 bits of 

memory (cache line) 
requires 32 bits (processor 
mask) of directory

Directory-based coherence

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Computer Architecture A Quantitative Approach Fifth Edition John L. Hennessy, David A. 
Patterson
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• Chip Multiprocessor 
(CMP)
– per-core L1 caches
– shared lower on-chip caches
– usually called “multicore”
– “reduced” cache coherency 

issues
o Between L1’s, L2 shared.

Chip Multiprocessor (CMP)

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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 Cache lines can 
migrate between L1 
caches belonging to 
different cores 
without involving the 
L2

 Clean lines – DDI 
(Direct Data 
Intervention )

 Dirty Lines – ML 
(Migratory Lines)

ARM MPCore: Cache-to-Cache Transfers
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Cache to Cache Latency

 Significant benefits 
achievable if the 
working set of the 
application partitioned 
between the cores can 
be contained within the 
sum of their caches

 Helpful for streaming 
data between cores 
 may be used in 

conjunction with 
interrupts between 
cores

 Though dirty lines have higher 
latency they still have  50% 
performance benefit

• D.M. Tullsen, S.J. Eggers, and H.M. Levy, "Simultaneous 
Multithreading: Maximizing On-Chip Parallelism," In 22nd 
Annual International Symposium on Computer 
Architecture, June, 1995

• replicated functional units, register state
• interleaved execution of several threads

– As opposed to extracting limited parallelism from 
instruction stream.

• fully shared cache hierarchy
• no cache coherency issues
• (called hyperthreading on x86)

Simultaneous multithreading (SMT)

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

L1 Cache

CPU Core

HW thread HW thread

Summary
• Hardware-based cache coherency:

– provide a consistent view of memory across the machine.
– Read will get the result of the last write to the memory hierarchy

Memory Ordering

• Example: a tail of a critical section
/* assuming lock already held */

/* counter++ */

load r1, counter

add r1, r1, 1

store r1, counter

/* unlock(mutex) */

store zero, mutex

• Relies on all CPUs seeing update of counter before 
update of mutex

• Depends on assumptions about ordering of stores to 
memory

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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Memory Models: Strong Ordering
• Sequential consistency

o the result of any execution is the same as if the operations of all the 
processors were executed in some sequential order, and the operations 
of each individual processor appear in this sequence in the order 
specified by its program

• Traditionally used by many architectures
• Assume X = Y = 0 initially

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

CPU 0
store 1, X
load r2, Y

CPU 1
store 1, Y
load r2, X

Example

Cache

CPU 0

Cache

CPU 1

Main Memory
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Potential interleavings
• At least one CPU must load the other's new 

value
– Forbidden result: X=0,Y=0

store 1, X
load r2, Y
store 1, Y
load r2, X
X=1,Y=0

store 1, X
store 1, Y
load r2, Y
load r2, X
X=1,Y=1

store 1, Y
load r2, X
store 1, X
load r2, Y
X=0,Y=1

store 1, Y
store 1, X
load r2, X
load r2, Y
X=1,Y=1

store 1, X
store 1, Y
load r2, X
load r2, Y
X=1,Y=1

store 1, Y
store 1, X
load r2, Y
load r2, X
X=1,Y=1

Realistic Memory Models
• Modern hardware features can interfere with store order:

– write buffer (or store buffer or write-behind buffer)
– instruction reordering (out-of-order execution)
– superscalar execution and pipelining

• Each CPU/core keeps its own data consistent, but how 
is it viewed by others?

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Write-buffers and SMP
• Stores go to write buffer to hide memory 

latency
– And cache invalidates

• Loads read from write buffer if possible

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

CPU0

Cache

Store C
…

Store B
…

Store A
….

CPU 0
store r1, A
store r2, B
store r3, C
load  r4, A

CPU 1
CPU 0

store r1, A
store r2, B
store r3, C

Write-buffers and SMP
• When the buffer eventually drains, what order 

does CPU1 see CPU0’s memory updates?

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

What happens in our example?

CPU0

Cache

Store C
…

Store B
…

Store A
….

Total Store Ordering (e.g. x86)
• Stores are guaranteed to occur in FIFO order

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

CPU0

Cache

Store C
…

Store B
…

Store A
….

CPU 1 sees
A=1
B=2
C=3

CPU 0
store 1, A
store 2, B
store 3, C
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Total Store Ordering (e.g. x86)
• Stores are guaranteed to occur in FIFO order

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

CPU0

Cache

…
Store 
mutex

…
Store 
count
….

CPU 1 sees
count updated

mutex = 0

/* counter++ */
load r1, count
add r1, r1, 1
store r1, counter

/* unlock(mutex) */
store zero, mutex

Total Store Ordering (e.g. x86)
• Assume X = Y = 0 initially

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

What is the problem here?

CPU 0
store 1, X
load r2, Y

CPU 1
store 1, Y
load r2, X

CPU0

Cache

…
Store X

….

CPU1

Cache

…
Store Y

….

Total Store Ordering (e.g. x86)
• Stores are buffered in write-buffer and 

don’t appear on other CPU in time.
• Can get X=0, Y=0!!!!
• Loads can “appear” re-ordered with 

preceding stores

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

load r2, Y
load r2, X
store 1, X
store 1, Y

CPU 0
store 1, X
load r2, Y

CPU 1
store 1, Y
load r2, X

CPU0

Cache

…
Store X

….

CPU1

Cache

…
Store Y

….

Memory “fences” or “barriers”
• The provide a “fence” between 

instructions to prevent apparent re-
ordering

• Effectively, they drain the local CPU’s 
write-buffer before proceeding.

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

CPU 0
store 1, X
fence
load r2, Y

CPU 1
store 1, Y
fence
load r2, X

CPU0

Cache

…
Store X

….

CPU1

Cache

…
Store Y

….

Total Store Ordering
• Stores are guaranteed to occur in FIFO order
• Atomic operations?

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

• Need hardware support, e.g.
• atomic swap
• test & set
• load-linked + store-conditional

• Stall pipeline and drain (and bypass) write buffer
• Ensures addr1 held exclusively

CPU 0
ll r1, addr1
sc r1, addr1

CPU 1
ll r1, addr1
sc r2, addr1

CPU

Cache

Store A
…

Store B
…

Store A
….

Partial Store Ordering (e.g. ARM MPcore) 

• All stores go to write buffer
• Loads read from write buffer if possible
• Redundant stores are cancelled or merged

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

• Stores can appear to overtake (be re-ordered) other 
stores
• Need to use memory barrier

CPU

Cache

Store A
…

Store B
…

Store A
….

CPU 1 sees
addr2 = VAL
addr1 = IDLE

CPU 0
store BUSY, addr1
store VAL, addr2
store IDLE, addr1
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Partial Store Ordering (e.g. ARM MPcore) 

• The barriers prevent preceding stores 
appearing after successive stores

– Note: Reality is a little more complex (read barriers, 
write barriers), but principle similar. 

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

• Store to counter can overtake store to mutex
• i.e. update move outside the lock

• Need to use memory barrier
• Failure to do so will introduce subtle bugs:

• Critical section “leaking” outside the lock

load r1, counter
add r1, r1, 1
store r1, counter
barrier
store zero, mutex

CPU

Cache

Store A
…

Store B
…

Store A
….

MP Hardware Take Away
• Each core/cpu sees sequential execution of own 

code
• Other cores see execution affected by

– Store order and write buffers
– Cache coherence model
– Out-of-order execution

• Systems software needs understand:
– Specific system (cache, coherence, etc..)
– Synch mechanisms (barriers, test_n_set, load_linked

– store_cond).
…to build cooperative, correct, and scalable 
parallel code

MP Hardware Take Away
• Existing sync primitives (e.g. locks) will have 

appropriate fences/barriers in place
– In practice, correctly synchronised code can ignore memory 

model.
• However, racey code, i.e. code that updates shared 

memory outside a lock (e.g. lock free algorithms) must 
use fences/barriers.
– You need a detailed understanding of the memory coherence 

model.
– Not easy, especially for partial store order (ARM).

Memory ordering for various Architectures
Type Alpha ARMv7 PA-RISC POWER SPARC 

RMO
SPARC 
PSO

SPARC 
TSO x86 x86 

oostore AMD64 IA-64 zSeries

Loads 
reordered 
after loads

Y Y Y Y Y Y Y

Loads 
reordered 
after stores

Y Y Y Y Y Y Y

Stores 
reordered 
after stores

Y Y Y Y Y Y Y Y

Stores 
reordered 
after loads

Y Y Y Y Y Y Y Y Y Y Y Y

Atomic 
reordered 
with loads

Y Y Y Y Y

Atomic 
reordered 
with stores

Y Y Y Y Y Y

Dependent 
loads 
reordered

Y

Incoherent 
instruction 
cache 
pipeline

Y Y Y Y Y Y Y Y Y Y

Concurrency Observations
• Locking primitives require exclusive access to the “lock”

– Care required to avoid excessive bus/interconnect traffic

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Kernel Locking
• Several CPUs can be executing kernel code 

concurrently.
• Need mutual exclusion on shared kernel data.
• Issues:

– Lock implementation
– Granularity of locking (i.e. parallelism)

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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Mutual Exclusion Techniques 
• Disabling interrupts (CLI — STI).

– Unsuitable for multiprocessor systems.
• Spin locks.

– Busy-waiting wastes cycles.
• Lock objects (locks, semaphores).

– Flag (or a particular state) indicates object is locked.
– Manipulating lock requires mutual exclusion.

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Hardware Provided Locking Primitives

• int test_and_set(lock *);
• int compare_and_swap(int c, 

int v, lock *);
• int exchange(int v, lock *)
• int atomic_inc(lock *)

• v = load_linked(lock *) / bool
store_conditional(int, lock *)
– LL/SC can be used to implement all of the above

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Spin locks
void lock (volatile lock_t *l) {

while (test_and_set(l)) ;
}
void unlock (volatile lock_t *l) {

*l = 0;
}
• Busy waits. Good idea?

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Spin Lock Busy-waits Until Lock 
Is Released

• Stupid on uniprocessors, as nothing will change while 
spinning.
– Should release (yield) CPU immediately.

• Maybe ok on SMPs: locker may execute on other CPU.
– Minimal overhead (if contention low).
– Still, should only spin for short time.

• Generally restrict spin locking to:
– short critical sections,
– unlikely to (or preferably can’t) be contended by the same CPU.
– local contention can be prevented

o by design
o by turning off interrupts

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Spinning versus Switching
– Blocking and switching

o to another process takes time
 Save context and restore another
 Cache contains current process not new

» Adjusting the cache working set also takes time
 TLB is similar to cache

o Switching back when the lock is free encounters the same 
again

– Spinning wastes CPU time directly
• Trade off

– If lock is held for less time than the overhead of 
switching to and back

 It’s more efficient to spin

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Spinning versus Switching
• The general approaches taken are

– Spin forever
– Spin for some period of time, if the lock is not 

acquired, block and switch
oThe spin time can be 
 Fixed (related to the switch overhead)
 Dynamic 

» Based on previous observations of the lock 
acquisition time

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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Interrupt Disabling
• Assume no local contention by design, is disabling 

interrupt important?

• Hint: What happens if a lock holder is preempted (e.g., at 
end of its timeslice)?

• All other processors spin until the lock holder is re-
scheduled

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Alternative to spinning:
Conditional Lock (TryLock)

bool cond_lock (volatile lock t *l) {
if (test_and_set(l))

return FALSE; //couldn’t lock
else

return TRUE; //acquired lock
}

• Can do useful work if fail to acquire lock.
• But may not have much else to do.
• Starvation: May never get lock!

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Another alternative to spinining.

void mutex lock (volatile lock t *l) {
while (1) {

for (int i=0; i<MUTEX N; i++)
if (!test and set(l))

return;
yield();

}
}

• Spins for limited time only
– assumes enough for other CPU to exit critical section

• Useful if critical section is shorter than N iterations.
• Starvation possible.

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Common Multiprocessor Spin Lock
void mp_spinlock (volatile lock t *l) {

cli(); // prevent preemption
while (test and set(l)) ; // lock

}
void mp unlock (volatile lock t *l) {

*l = 0;
sti();

}

• Only good for short critical sections
• Does not scale for large number of processors
• Relies on bus-arbitrator for fairness
• Not appropriate for user-level
• Used in practice in small SMP systems

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Need a more systematic 
analysis

Thomas Anderson, “The Performance of Spin Lock Alternatives for 
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel 
and Distributed Systems, Vol 1, No. 1, 1990

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Compares Simple Spinlocks
• Test and Set

void lock (volatile lock_t *l) {
while (test_and_set(l)) ;

}

• Test and Test and Set

void lock (volatile lock_t *l) {
while (*l == BUSY || test_and_set(l)) ;

}

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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test_and_test_and_set LOCK
• Avoid bus traffic contention caused by test_and_set until it is likely to succeed 
• Normal read spins in cache
• Can starve in pathological cases

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Benchmark
for i = 1 .. 1,000,000 {

lock(l)
crit_section()
unlock()
compute()

}

• Compute chosen from uniform random 
distribution of mean 5 times critical section

• Measure elapsed time on Sequent Symmetry 
(20 CPU 30386, coherent write-back invalidate 
caches)

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Results
• Test and set performs poorly once there is enough CPUs 

to cause contention for lock
– Expected

• Test and Test and Set performs better
– Performance less than expected
– Still significant contention on lock when CPUs notice release and 

all attempt acquisition
• Critical section performance degenerates

– Critical section requires bus traffic to modify shared structure
– Lock holder competes with CPU that missed as they test and set

o lock holder is slower
– Slower lock holder results in more contention

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Idea
• Can inserting delays reduce bus traffic and 

improve performance
• Explore 2 dimensions

– Location of delay
o Insert a delay after release prior to attempting acquire
o Insert a delay after each memory reference

– Delay is static or dynamic
o Static – assign delay “slots” to processors

 Issue: delay tuned for expected contention level
o Dynamic – use a back-off scheme to estimate contention

 Similar to ethernet
 Degrades to static case in worst case.

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Examining Inserting Delays

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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Queue Based Locking
• Each processor inserts itself into a waiting queue

– It waits for the lock to free by spinning on its own 
separate cache line

– Lock holder frees the lock by “freeing” the next 
processors cache line.

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Results

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Results
• Static backoff has higher overhead when backoff 

is inappropriate
• Dynamic backoff has higher overheads when 

static delay is appropriate
– as collisions are still required to tune the backoff time

• Queue is better when contention occurs, but has 
higher overhead when it does not.
– Issue: Preemption of queued CPU blocks rest of 

queue (worse than simple spin locks)

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

• John Mellor-Crummey and Michael Scott, “Algorithms for 
Scalable Synchronisation on Shared-Memory 
Multiprocessors”, ACM Transactions on Computer 
Systems, Vol. 9, No. 1, 1991

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

MCS Locks
• Each CPU enqueues its own private lock variable into a queue and 

spins on it
– No contention

• On lock release, the releaser unlocks the next lock in the queue
– Only have bus contention on actual unlock
– No starvation (order of lock acquisitions defined by the list)

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

MCS Lock
• Requires 

– compare_and_swap() 
– exchange() 

oAlso called fetch_and_store()

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Sample MCS code for ARM MPCore

void mcs_acquire(mcs_lock *L, mcs_qnode_ptr I) 
{

I->next = NULL;
MEM_BARRIER;
mcs_qnode_ptr pred = (mcs_qnode*) SWAP_PTR( L, (void *)I);
if (pred == NULL) 
{ /* lock was free */

MEM_BARRIER;
return;

}
I->waiting = 1; // word on which to spin
MEM_BARRIER;
pred->next = I; // make pred point to me

}

Selected Benchmark
• Compared

– test and test and set
– Anderson’s array based queue
– test and set with exponential back-off
– MCS

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Confirmed Trade-off
• Queue locks scale well but have higher overhead 
• Spin Locks have low overhead but don’t scale well
• What do we use?

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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• Beng-Hong Lim and Anant Agarwal, “Reactive 
Synchronization Algorithms for Multiprocessors”, 
ASPLOS VI, 1994

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Idea
• Can we dynamically switch locking methods to 

suit the current contention level???

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Issues
• How do we determine which protocol to use?

– Must not add significant cost
• How do we correctly and efficiently switch protocols?
• How do we determine when to switch protocols?

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Protocol Selection
• Keep a “hint”
• Ensure both TTS and MCS lock a never free at the same 

time
– Only correct selection will get the lock
– Choosing the wrong lock with result in retry which can get it right 

next time
– Assumption: Lock mode changes infrequently 

o hint cached read-only
o infrequent protocol mismatch retries

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License
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Changing Protocol
• Only lock holder can switch to avoid race conditions

– It chooses which lock to free, TTS or MCS.

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

When to change protocol
• Use threshold scheme

– Repeated acquisition failures will switch mode to queue
– Repeated immediate acquisition will switch mode to TTS  

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

Results

© Kevin Elphinstone. Distributed under Creative Commons 
Attribution License

The multicore evolution and 
operating systems 

Frans Kaashoek 

Joint work with: Silas Boyd-Wickizer, Austin T. Clements, 
Yandong Mao, Aleksey Pesterev,  Robert Morris, and Nickolai 

Zeldovich 

MIT 

• Non-scalable locks are dangerous.
Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. In the 
Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.

How well does Linux scale? 

● Experiment: 
● Linux 2.6.35-rc5 (relatively old, but problems are 
representative of issues in recent kernels too) 
● Select a few inherent parallel system applications 
● Measure throughput on different # of cores 
● Use tmpfs to avoid disk bottlenecks 

● Insight 1: Short critical sections can lead to 
sharp performance collapse 
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Off-the-shelf 48-core server (AMD) 
DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

● Cache-coherent and non-uniform access 
● An approximation of a future 48-core chip 

Poor scaling on stock Linux kernel 
48 

perfect scaling 44
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terrible scaling 
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0 
memcached PostgreSQL Psearchy

Exim Apache gmake Metis

Y-axis: (throughput with 48 cores) / (throughput with one core) 
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Oprofile shows an obvious problem 

40 cores: 
10000 msg/sec 

48 cores: 
4000 msg/sec 

samples % app name 
2616 7.3522  vmlinux 
2329 6.5456  vmlinux 
2197 6.1746  vmlinux 
1488 4.1820  vmlinux 
1348 3.7885  vmlinux 
1182 3.3220  vmlinux 
966 2.7149  vmlinux 

samples % app name 
13515 34.8657  vmlinux 
2002 5.1647  vmlinux 
1661 4.2850  vmlinux 
1497 3.8619  vmlinux 
1026 2.6469  vmlinux 
914 2.3579  vmlinux 
896 2.3115  vmlinux 

symbol name 
radix_tree_lookup_slot 
unmap_vmas 
filemap_fault 
__do_fault 
copy_page_c 
unlock_page 
page_fault 

symbol name 
lookup_mnt 
radix_tree_lookup_slot 
filemap_fault 
unmap_vmas 
__do_fault 
atomic_dec 
unlock_page 
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2329 6.5456 vmlinux 
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966 2.7149 vmlinux 

samples % app name 
13515 34.8657 vmlinux 
2002 5.1647 vmlinux 
1661 4.2850 vmlinux 
1497 3.8619 vmlinux 
1026 2.6469 vmlinux 
914 2.3579 vmlinux 
896 2.3115 vmlinux 

symbol name 
radix_tree_lookup_slot 
unmap_vmas 
filemap_fault 
__do_fault 
copy_page_c 
unlock_page 
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symbol name 
lookup_mnt 
radix_tree_lookup_slot 
filemap_fault 
unmap_vmas 
__do_fault 
atomic_dec 
unlock_page 

Oprofile shows an obvious problem 
samples % app name symbol name
2616 7.3522 vmlinux radix_tree_lookup_slot
2329 6.5456 vmlinux unmap_vmas

40 cores: 2197 6.1746 vmlinux filemap_fault
10000 msg/sec 1488 4.1820 vmlinux __do_fault

1348 3.7885 vmlinux copy_page_c
1182 3.3220 vmlinux unlock_page
966 2.7149 vmlinux page_fault

samples % app name symbol name
13515 34.8657 vmlinux lookup_mnt

48 cores: 
4000 msg/sec 

2002 5.1647 vmlinux 
1661 4.2850 vmlinux 
1497 3.8619 vmlinux 
1026 2.6469 vmlinux 
914 2.3579 vmlinux 
896 2.3115 vmlinux 

radix_tree_lookup_slot 
filemap_fault 
unmap_vmas 
__do_fault 
atomic_dec 
unlock_page 

Bottleneck: reading mount table 
● Delivering an email calls sys_open 

● sys_open calls 

struct vfsmount *lookup_mnt(struct path *path) 
{ 

struct vfsmount *mnt; 
spin_lock(&vfsmount_lock); 
mnt = hash_get(mnts, path); 
spin_unlock(&vfsmount_lock); 
return mnt; 

} 

Bottleneck: reading mount table 

● sys_open calls: 
struct vfsmount *lookup_mnt(struct path *path) 
{ 

struct vfsmount *mnt; 
spin_lock(&vfsmount_lock); 
mnt = hash_get(mnts, path); 
spin_unlock(&vfsmount_lock); 
return mnt; 

} 

Bottleneck: reading mount table 

● sys_open calls: 
struct vfsmount *lookup_mnt(struct path *path) 
{ 

struct vfsmount *mnt; 
spin_lock(&vfsmount_lock); 
mnt = hash_get(mnts, path); 
spin_unlock(&vfsmount_lock); 
return mnt; 

} 

Serial section is short.  Why does 
it cause a scalability bottleneck? 

What causes the sharp 
performance collapse? 

● Linux uses ticket spin locks, which are non-
scalable 

● So we should expect collapse [Anderson 90] 

● But why so sudden, and so sharp, for a short 
section? 

● Is spin lock/unlock implemented incorrectly? 
● Is hardware cache-coherence protocol at fault? 
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Scalability collapse caused by 
non-scalable locks [Anderson 90] 

void spin_lock(spinlock_t *lock) 
{ 

t = atomic_inc(lock->next_ticket); 
while (t != lock->current_ticket) 

; /* Spin */ 
} 

void spin_unlock(spinlock_t *lock) 
{ 

lock->current_ticket++; 
} 

struct spinlock_t { 
int current_ticket; 
int next_ticket; 

} 
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void spin_lock(spinlock_t *lock) 
{ 

t = atomic_inc(lock->next_ticket); 
while (t != lock->current_ticket) 

; /* Spin */ 
} 

void spin_unlock(spinlock_t *lock) 
{ 

lock->current_ticket++; 
} 

struct spinlock_t { 
int current_ticket; 
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} 

Scalability collapse caused by 
non-scalable locks [Anderson 90] 

void spin_lock(spinlock_t *lock) 
{ 

t = atomic_inc(lock->next_ticket); 
while (t != lock->current_ticket) 

; /* Spin */ 
} 

500 cycles 

void spin_unlock(spinlock_t *lock) 
{ 

lock->current_ticket++; 
} 

struct spinlock_t { 
int current_ticket; 
int next_ticket; 

} 
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Scalability collapse caused by 
non-scalable locks [Anderson 90] 

void spin_lock(spinlock_t *lock) 
{ 

t = atomic_inc(lock->next_ticket); 
while (t != lock->current_ticket) 

; /* Spin */ 
} 

void spin_unlock(spinlock_t *lock) 
{ 

lock->current_ticket++; 
} 

struct spinlock_t { 
int current_ticket; 
int next_ticket; 

} 

Previous lock holder notifies 
next lock holder after 

sending out N/2 replies 

Why collapse with short sections? 

● Arrival rate is proportional to # non-waiting cores 
● Service time is proportional to # cores waiting (k) 

● As k increases, waiting time goes up 
● As waiting time goes up, k increases 

● System gets stuck in states with many waiting cores 

Short sections result in collapse 

● Experiment: 2% of time spent in critical section 
● Critical sections become “longer” with more cores 
● Lesson: non-scalable locks fine for long sections 

Avoiding lock collapse 

● Unscalable locks are fine for long sections 
● Unscalable locks collapse for short sections 

● Sudden sharp collapse due to “snowball” effect 
● Scalable locks avoid collapse altogether 

● But requires interface change 
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Scalable lock scalability 

● It doesn't matter much which one 
● But all slower in terms of latency 

Avoiding lock collapse 
is not enough to scale 

● “Scalable” locks don't make the kernel scalable 
● Main benefit is avoiding collapse: total throughput 
will not be lower with more cores 
● But, usually want throughput to keep increasing with 
more cores 


