COMP9242 Advanced OS

S2/2016 WO03: Virtualization
AUSTRALIA @GernotHeiser

Never Stand Still Engineering Computer Science and Engineering

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work

— to remix—to adapt the work

« under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work)

as follows:
“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

2 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtual Machine (VM)

“A VM is an efficient, isolated duplicate of a real machine”
[Popek&Goldberg 74]

* Duplicate: VM should behave identically to the real machine
— Programs cannot distinguish between real or virtual hardware
— Except for:
o Fewer resources (and potentially different between executions)
o Some timing differences (when dealing with devices)

- Isolated: Several VMs execute without interfering with each other

- Efficient: VM should execute at speed close to that of real hardware
— Requires that most instruction are executed directly by real hardware

Hypervisor aka virtual-machine monitor. Software implementing the VM

“Real machine”. Modern usage more general, “virtualise” any API

3 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Plus anything else you

Types of Virtualisation ant t sound cool!

1 &
Programming

Processor Language

OS AP
=
o

Pro-
cess
Viraliz. Layer
Hypervisor

Platform VM r System VM
Type-1 Type-2
“‘Bare metal” “Hosted”

“Platform”
(HW/SW
Interface)

Process

Java
Program

Processor

OS-level VM Process VM

=
Cess
o5

Processor

4 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Why Virtual Machines?

» Historically used for easier sharing of expensive mainframes
— Run several (even different) OSes on same machine
o called guest operating system
— Each on a subset of physical resources

— Can run single-user single-tasked OS
in time-sharing mode

o legacy support
 Gone out of fashion in 80’s

— Time-sharing OSes common-place
— Hardware too cheap to worry...

5 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

) AUSTRALIA

Why Virtual Machines?

» Renaissance in recent years for improved isolation

» Server/desktop virtual machines
— Improved QoS and security
— Uniform view of hardware
— Complete encapsulation
o replication
o migration/consolidatio
o checkpointing
o debugging
— Different concurrent OSes Q
o eg Linux + Windows O
— Total mediation
« Would be mostly unnecessary
— ... if OSes were doing their job!

Gernot’s prediction of 2004
2014 OS textbooks will be
identical to 2004 version
except for
s/process/VM/g

N\

6 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Why Virtual machines

» Core driver today is Cloud computing
— Increased utilisation by sharing hardware
— Reduced maintenance cost through scale
— On-demand provisioning
— Dynamic load balancing though migration

App

[|os []os

Hypervisor Hypervisor

App

os

A H/W

Cloud Provider Data Centre

7 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Why Virtual Machines?

 Embedded systems: integration of heterogenous environments
— RTOS for critical real-time functionality
— Standard OS for GUls, networking etc
« Alternative to physical separation
— low-overhead communication
— size, weight and power (SWaP)

reduction VM, pam
: Critical
— consolidate complete components sSW
o including OS,
o certified

o supplied by different vendors
o legacy support

— “dual-persona” phone

— secure domain on COTS device

8 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Hypervisor aka Virtual Machine Monitor

2

Program that runs on real hardware to implement the virtual machine

Controls resources

— Partitions hardware
— Schedules guests
o “world switch” Hypervisor
— Mediates access to shared resources '

o e.g. console ‘ -
— Hypervisor executes in privileged mode
— Guest software executes in unprivileged mode
— Privileged instructions in guest cause a trap into hypervisor
— Hypervisor interprets/emulates them
— Can have extra instructions for hypercalls

Implications

COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Native vs. Hosted VMM

Native/Classic/ Hosted/Type-li

Bare-metal/Type-| Hosted VMM beside native apps

— Sandbox untrusted apps

— Convenient for running
alternative OS on desktop

— leverage host drivers

 Less efficient
— Double node switches
— Double context switches

— Host not optimised for exception
forwarding

Hypervisor

10 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Mechanics: Instruction Emulation

» Traditional irap-and-emulate (T&E) approach:
— qguest attempts to access physical resource
— hardware raises exception (trap), invoking HV’s exception handler
— hypervisor emulates result, based on access to virtual resource
* Most instructions do not trap
— prerequisite for efficient virtualisation
— requires VM ISA (almost) same as processor ISA

Guest Hypervisor

Exception

11 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Trap-and-Emulate Requirements

Definitions:

* Privileged instruction: traps when executed in user mode
— Note: NO-OP is insufficient!
* Privileged state: determines resource allocation
— Includes privilege mode, addressing context, exception vectors...
« Sensitive instruction: control- or behaviour-sensitive
— control sensitive: changes privileged state
— behaviour sensitive: exposes privileged state
o incl instructions which are NO-OPs in user but not privileged state

* Innocuous instruction: not sensitive

« Some instructions are inherently sensitive
— eg TLB load

» Others are context-dependent
— eg store to page table

12 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Trap-and-Emulate Architectural Requirements

« T&E virtualisable: all sensitive instructions are privileged
— Can achieve accurate, efficient guest execution
o ... by simply running guest binary on hypervisor
— VMM controls resources
— Virtualized execution indistinguishable from native, except:
o resources more limited (smaller machine)
o timing differences (if there is access to real time clock)

 Recursively virtualisable:
— run hypervsior in VM
— possible if hypervsior not timing dependent, overheads low
Guest Hypervisor

Exception

13 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Impure Virtualization

Virtualise other than by T&E of unmodified binary
Two reasons:
— Architecture not T&E virtualisable
— Reduce virtualisation overheads
Change guest OS, replacing sensitive instructions
— by trapping code (“hypercalls”)
— by in-line emulation code

Two approaches
— binary translation: change binary
— para-virtualisation: change ISA

14 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Binary Translation

« Locate sensitive instructions in guest binary,
replace on-the-fly by emulation or trap/hypercall

— pioneered by VMware
— detect/replace combination of sensitive instruction for performance

— modifies binary at load time, no source access required
* Looks like pure virtualisation!
* Very tricky to get right (especially on x86!)
— Assumptions needed about sane guest behaviour
— “Heroic effort” [Orran Krieger, then IBM, later VMware] ©

15 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Para-Virtualization

* New(ish) name, old technique
— coined by Denali [Whitaker ‘02], popularised by Xen [Barham ‘03]
— Mach Unix server [Golub ‘90], L4Linux [Hartig ‘97], Disco [Bugnion ‘97]
* |dea: manually port guest OS to modified (more high-level) ISA
— Augmented by explicit hypervisor calls (hypercalls)
o higher-level ISA to reduce number of traps
o remove unvirtualisable instructions

Guest

o remove “messy” ISA features which complicate Hypervisor
— Generally outperforms pure virtualisation, binary re-writing
« Drawbacks: Hardware

— Significant engineering effort

— Needs to be repeated for each guest-ISA-hypervisor combination
— Para-virtualised guests must be kept in sync with native evolution
— Requires source

16 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Overheads

VMM must maintain virtualised privileged machine state

— processor status
— addressing context
— device state
VMM needs to emulate privileged instructions
— translate between virtual and real privileged state
— eg guest « real page tables
Virtualisation traps are expensive
— >1000 cycles on some Intel processors!
— Better recently, Haswell has <500 cyc round-trip
Some OS operations involve frequent traps
— STI/CLI for mutual exclusion
— frequent page table updates during fork()
— MIPS KSEG addresses used for physical addressing in kernel

17 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization and Address Translation

Two levels of address
translation!

Q
Virtual Memory o Virtual Memory Virtual Memory W
Virtual ° Virtual | Virtual
Page Page Page

Table

Page
Table

Table Table

Page
Table

Must implement with single MMU translation!

18 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Mechanics: Shadow Page Table

Guest (Virtual)
User virtual guest page

1d r0, adr ~~.address table Shadow (real) guest

page table, translations
cached in TLB

Hypervisor's
Guest guest
physical memory map

Physical
address

& UNSW

19 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Mechanics: Shadow Page Table

Hypervisor must shadow (virtualize)
all PT updates by guest:

« trap guest writes to guest PT

« translate guest PA in guest (virtual)

Used by VMware

PTE using guest memory map @)
* insert translated PTE in shadow PT 0
User
Guest 9 :
1d r0, adr virtual Shadow PT has TLB semantics

address

(i.e. weak consistency) =

Update at synchronisation points:
Guest « page faults
physical
address C TLB ﬂUSheS
Shadow PT as virtual TLB
« similar semantics

* can be incomplete:
LRU translation cache

Physical

20 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualisation Semantics: Lazy Shadow Update

User Guest OS Hypervisor

mapping to
GPT

add mappings...

return to user

dCCess new page

21 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualisation Semantics: Lazy Shadow Update

User Guest OS Hypervisor

mapping
in GPT

invalidate mapping

continue

22 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Mechanics: Real Guest PT

Hypervisor * On guest PT access must
maintains guest PT translate (virtualize) PTEs

User — store: translate guest “PTE" to
real PTE

R — load: translate real PTE to
guest “‘PTE”

« Each guest PT access traps!
— including reads
— high overhead

Physical
address

23 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Mechanics: Optimised Guest PT

Para-virtualized

guest “knows” it is - Guest translates PTEs itself when
virtualized reading from PT

User — supported by Linux PT-access
1d r0, adr wrappers
» Guest batches PT updates using
hypercalls

— reduced overhead

[0}

®
Q

Used by
original Xen

Physical
address

24 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Techniques

* Impure virtualisation methods enable new optimisations
— avoid traps through ability to control the ISA
— changed contract between guest and hypervisor
« Example: virtualised guest page table
— lazy update of virtual state (TLB semantics)
« Example: virtual interrupt-enable bit (in virtual PSR)
— requires changing guest’s idea of where this bit lives
— hypervisor knows about VM-local virtual state
o eg queue vitual interrupt until guest enables in virtual PSR

VPSR PSR
| 0] || 0] | mov rl, #VPSR
s id Trap SR | ! 1dr r0 , [r1]
| I o[| orr 1r0,r0,#VPSR ID

sto r0, [rl]

25 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Mechanics: 3 Device Models

Emulated

Device Virtual Device

Driver Driver Driver

Emu- Device
lation Driver

Device Device Device

UNSW

7-- AUSTRALIA

26 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Mechanics: Emulated Device

Device

register

accesses
Device
Driver

« Each device access must be
trapped and emulated

En_nu- — unmodified native driver
UL — high overhead!

Device

27 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Mechanics: Split Driver (Xen
speak)

“Para-
virtualized

driver”

« Simplified, high-level

Simple Virtual device interface
interface Driver — small number of
hypercalls
— new (but very
Device simple) driver
Virtual SALS] — low overhead
device — must port drivers to
hypervisor

Device

28 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Mechanics: Driver OS (Xen Dom0)

Virtual Device » Leverage Driver-OS
Driver Drivers native drivers
— no driver porting

— must trust complete
Driver OS guest!

— huge TCB!

29 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Virtualization Mechanics: Pass-Through Driver

 Unmodified native driver

« (Can’t share device
between VMs

« Must trust driver (and

guest) _ _
— unless have hardware Direct device
support (/O MMU) access by Device
C‘DD guest 4 Driver
O

Available on
modern x86,
latest ARM

30 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Modern Architectures Not T&E Virtualisable

« Examples:

— x86: many non-virtualizable features
o e.g. sensitive PUSH of PSW is not privileged
o segment and interrupt descriptor tables in virtual memory
o segment description expose privileged level

— MIPS: mostly ok, but
o kernel registers kO, k1 (for save/restore state) user-accessible
o performance issue with virtualising KSEG addresses

— ARM: mostly ok, but
o some instructions undefined in user mode (banked registers, CPSR)
o PC is a GPR, exception return is MOVS to PC, doesn'’t trap

« Addressed by virtualization extensions to ISA
— x86, Itanium since ~2006 (VT-x, VT-i, AMD-V), ARM since 12
— additional processor modes and other features
— all sensitive ops trap into hypervisor or made innocuous (shadow state)
o eg guest copy of PSW

31 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

x86 Virtualization Extensions (VT-x)

 New processor mode: V//-x root mode
— orthogonal to protection rings
— entered on virtualisation trap

Non-Root

Kernel
entry

VM exit

32 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

ARM Virtualization Extensions (1)

Hyp mode

New privilege level
« Strictly higher than kernel

* Virtualizes or traps all
sensitive instructions

“Normal world” “Secure world” « Only available in ARM
TrustZone “normal world”

EL,
EL,

User mode

33 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

ARM Virtualization Extensions (2)

Configurable Traps
@

—

x86 similar User mode

.

User mode
Native syscall i I
Can configure traps to
go directly to'guest OS
T ~ Hypmode
Virtual syscall performance Virtual syscall
boost! Trap to guest

34 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

ARM Virtualization Extensions (3)

1) Load faulting instruction

Emulation « Compulsory L1-D miss!
2) Decode instruction
« Complex logic
3) Emulate instruction
» Usually straightforward
IR mv CPU_ASID,rl R2 mv CPU_ASID,rl
L1 1I- 1d rl, (r0,ASID) L1 D-

1d sp, (rl,kern_ stk) ...
1d rl1, (x0,ASID)

mv CPU ASID,rl
1d sp, (rl,kern_stk)

L2
Cache

35 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

ARM Virtualization Extensions (3)

1) HW decodes instruction

Emulation Support

equivalent

/ mv
IR mv CPU_ASID,rl

1‘ > r1
L1 I- 1d rl1, (x0,ASID) L1 D-
Cache mv CPU ASID,rl Cache -

1d sp, (rl,kern_ stk)

T

L2

Cache 1d r1, (x0,ASID)

mv CPU ASID,rl
1d sp, (rl,kern_stk)

* No L1 miss

* No software decode

2) SW emulates instruction
» Usually straightforward

R2
R3

36 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

0) AUSTRALIA

ARM Virtualization Extensions (4)

_ > X86 similar
2-stage translatione® (EPTs)

« Hardware PT walker traverses

(Virtual)
User \ﬁll:ltﬁ:il: guest page bOth PTS
1d £0, adr =~ address 20l « Loads combined (guest-virtual
to physical) mapping into TLB

e eliminates “virtual TLB”

Hypervisor's
Guest guest
physical memory map
address
Physical
address

37 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

ARM Virtualization Extensions (4)

» On page fault walk twice number of

2-stage translation cost page tables!

G « Can have a page miss on each
User uest .

virtual — requiring PT walk
1d r0, adr . .

address « O(n2) misses in worst case for

n-level PT

Worst-case cost is massively worse
el translation!

physical
address

Trade-off:
- fewer traps

» simpler implementation
* higher TLB miss cost
50% in extreme cases!

38 COMP9242 S2/2016 W03

ARM Virtualization Extensions (5)

Virtual Interrupts * ARM has 2-part IRQ controller
— Global “distributor”
— Per-CPU “interface”
 New H/W “virt. CPU interface”

l — Mapped to guest
CPU Interface — Used by HV to forward IRQ

— Used by guest to
acknowledge

« Halves hypervisor invocations
for interrupt virtualization

Distributor

.
g x86: issue only
for legacy level-

triggered IRQs

39 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

ARM Virtualization Extensions (6)

System MMU (I/O0 MMU)
 Devices use virtual addresses

« Translated by sysiem VIVL

> = — elsewhere called 1/0 MMU
/ _ translation cache, like TLB
Guest Physical — reloaded from same page table
Address e @ b
~
¢ (VT-d)

o
P
TLB ' Many ARM

SoCs

Physical different

Address

Physical Memory « Can do pass-through I/O safely

— guest accesses device registers
— no hypervisor invocation

40 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

World Switch

x86 ARM
« VM state is < 4 KiB « VM state is 488 B
« Save/restore done by « Save/restore done by software
hardware on VMexit/VMentry (hypervisor)
 Fast and simple « Selective save/restore

— Eg traps w/o world switch

l Save Restore

41 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Microkernel as Hypervisor (NOVA, selL4)
ARM x86

Virtualisation- One per VM
specific cannot break (YM
VM - isolation!

VM

Root

VMM

T ocenton e

Hypercall \ Exception IPC

N
yp General-purpose

42 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Hybrid Hypervisor OSes

* |dea: turn standard OS into hypervisor
— ... by running in VT-x root mode
— eg: KVM (“kernel-based virtual machine”) Variant: VMware MVP

« Can re-use Linux drivers etc « ARM hypervisor
* Huge trusted computing base! « pre-HW support
« Often falsely called a Type-2 hypervisor * re-writes exception

vectors in Android
kernel to catch

virtualization traps
in guest

Non-Root

VM exit

43 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

ARM: selL4 vs KVM [Dall&Nieh ‘14]

selL4 KVM

VM

Hypercall

Virtualisation Cost (KVM)

VM exit+entry 27 821
World Switch 1,135 814
I/O Kernel 2’8500 3,291

/O User 6,704 12,218

Core CPU 2,493 16,177
Page Faults 738 3,410
Interrupts 1,057 1,978
Timers 180 973
Other 1,344 1,288

KVM needs
WS for any
hypercall!

Source: [Dall&Nieh, ASPLOS 14]

Total 5,812 25,367

45 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Fun and Games with Hypervisors

46 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Time-travelling virtual machines [King ‘05]

— debug backwards by replay VM from checkpoint, log state changes
SecVisor: kernel integrity by virtualisation [Seshadri ‘07]

— controls modifications to kernel (Quest) memory
Overshadow: protect apps from OS [Chen ‘08]

— make user memory opaque to OS by transparently encrypting
Turtles: Recursive virtualisation [Ben-Yehuda “10]

— virtualize VT-x to run hypervisor in VM
CloudVisor: mini-hypervisor underneath Xen [Zhang ‘11]

— isolates co-hosted VMs belonging to different users

— leverages remote attestation (TPM) and Turtles ideas

... and many more!

Hypervisors vs Microkernels

« Both contain all code executing at highest privilege level
— Although hypervisor may contain user-mode code as well
o privileged part usually called “hypervisor”
o user-mode part often called “VMM” Difference to
- Both need to abstract hardware resources traditional
— Hypervisor: abstraction closely models hardware terminology!
— Microkernel: abstraction designed to support wide range of systems

 What must be abstracted?
— Memory
- CPU
— 1/0
— Communication

47 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Just page
tables in
disguise

What's the difference?

Memory <MMU (VMMU) AddreW
CPU /mPU) “Thread f\
N e SCNEAUlEr Activatic: Just
— kernel-
I/O » Simplified virtuai IPC Interface ta scheduled
device user-mode driver activities

* Driver in hypervisor * Interrupt IPC

: 2 Real

Virtual NIC, with drivery”™ High-performan. Bliiizli- 151
and network stack message-passing

Communication

Similar abstractions Oy;?rl]rgaaé
Optimised for Modelled on HW, Cust AISI
different use cases Re-uses SW ustom

48 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Closer Look at I/0 and Communication

Virtual Device

Driver Driver Device

Driver

« Communication is critical for 1/0O
— Microkernel IPC is highly optimised
— Hypervisor inter-VM communication is frequently a bottleneck

49 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Hypervisors vs Microkernels: Drawbacks

Hypervisors: Microkernels:
« Communication is Achilles heel + Not ideal for virtualization
— more important than expected — API not very effective
o critical for I/O o L4 virtualization
performance close to

— plenty improvement attempts

in Xen hypervisor

o effort much higher
— Needed for legacy support

« Most hypervisors have big — No issue with H/W support?

TCBs * L4 model uses kernel-
— infeasible to achieve high scheduled threads for more
assurance of security/safety than exploiting parallelism
— in contrast, microkernel — Kernel imposes policy
implementations can be — Alternatives exist, eg. K42
proved correct uses scheduler activations

50 COMP9242 S2/2016 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

