&cse

E

Events, Co-routines,
Continuations and Threads

OS (and application)
Execution Models

THE UNIVERSITY OF
NOW SOUTIT WALTS

#

Construction Approaches

* Events

+ Coroutines

» Threads

+ Continuations

THE UNIVERSY OF

NOW SOUTI WALTS ©Kouin Ehinstone

I kS|
-@ NOW SOUTIT WALTS

System Building

» General purpose systems need to deal with
— Many activities
- potentially overlapping
+ may be interdependent
— Activities that depend on external phenomena
+ may requiring waiting for completion (e.g. disk read)
- reacting to external triggers (e.g. interrupts)
» Need a systematic approach to system
structuring

HE UNIVERSIY OF
© Kevin Ephnstone.

fcse
Memory « The event model only
requires a single stack
orY v ande
| Loz — All event handlers must
Event return to the event loop
Event = No yielding
» No preemption of
Handler 3 handlers
— Handlers generally short
lived

E

THE UNIVERSITY OF
NOW SOUTIT WALTS

© Kevin Elphnstone.

@

Events

» External entities generate (post) events.
— keyboard presses, mouse clicks, system calls

» Event loop waits for events and calls an
appropriate event handler.
— common paradigm for GUls

« Event handler is a function that runs until
completion and returns to the event loop.

THE UNIVERSY OF

NOW SOUTI WALTS © Kovin Ehinsione

E

Whatis ‘a’?

int a; /* global */

int func()
{
a=1;
if (a == 1) {
a=2;
} No concurrency issues within a
return a; handler
¥

THE UNIVERSITY OF

NOW SOUTIT WALTS © Kevin Elphnstone.

7CS

(o)

Event-based kernel on CPU
with protection

Kernel-only Memory User Memory

CPU
Event ﬁ*
Loop
Uset [——— |

7
Handler 2 User

Event Data
* Huh?
» How to support

2 !
el multiple

processes?

7
THE UNIVERSLY OF
NCW SOUTITWALES © Kevin Eiphinstone:

Event-based kernel on CPU
with protection

Kernel-only Memory User Memory CPU

PC

=
— 5
S
User-level state in
PES
Handler 2 PCB
Kernel starts on

fresh stack on each
trap
No interrupts, no
blocking in kernel
mode

o
Qa
&

Co-routines
« Originally described in:

— Melvin E. Conway. 1963. Design of a separable transition-diagram
compiler. Commun. ACM 6, 7 (July 1963), 396-408.
DOl=http://dx.doi.org/10.1145/366663.366704

» Analogous to a “subroutine” with
extra entry and exit points.

+ Via yield()
— Supports long running subroutines

— An implement sync primitives that wait
for a condition to be true

9
THE UNIVERSY OF
NOW SOUTI WALTS ©Kouin Ehinstone

8
THE UNIVERSITY OF
NCw SOUTIT WALTS © Kevin Exgtinsione

7cse
Memory yield() saves state of routine
A and starts routine B
CPU — or resumes B'’s state from its
previous yield() point.
— | No preemption
N

fcse

Whatis ‘a’?

int a; /* global */

int func()
{
a=1;
yield();
if (a == 1) {
a=2;
¥
return a;
¥

11
THE UNIVERSITY OF
NCW SOUTIT WALTS © Kevin Exgtinsione

. 10
THE UNIVERSY OF
NOW SOUTI WALTS © Kovin Ehinsione

Whatis ‘a’?
int a; /* global */

int func() {

a=1;
if (a == 1) {
yield();
a=2;
¥
return a; No concurrency issues/races as
} globals are exclusive between

yields()

12
THE UNIVERSITY OF
NCw SOUTIT WALTS © Kevin Exgtinsione

Co-routines Implementation
strategy?

Memory .

-
/

Usually implemented with a
stack per routine

Preserves current state of
execution of the routine

CPU

REGS

13
THE UNIVERSITY OF
NOW SOUTIT WALTS © Kevin Elghinstone.

A hypothetical yield()

yield:

a0 contains a pointer to the previous routine’s struct.
al contains a pointer to the new routine’s struct.

The registers get saved on the stack, namely:

s0-s8
gp, ra

~
R

*/

/* Allocate stack space for saving 11 registers. 11%*4 = 44 */
addi sp, sp, -44

. 15
THE UNIVERSY OF
NOW SOUTI WALTS

cse
/* Get the new stack pointer from the new pch */
1w sp, 0(al)
nop /% delay slot for load */
/* Now, restore the registers */
1w 50, 0(sp)
1w s1, 4(sp)
1w 52, 8(sp)
1w s3, 12(sp)
1w s4, 16(sp)
1w s5, 20 (sp)
1w s6, 24(sp)
1w s7, 28(sp)
1w s8, 32(sp)
1w 9P, 36(sp)
1w ra, 40(sp)
nop /% delay slot for load */
/* and return. */
3 ra
addi sp, sp, 44 /% in delay slot */
.end mips_switch 17
[HE UNIVERSI LY OF
_@ NCW SOUTIT WALLS

THE UNIVERSITY OF
NOW SOUTIT WALTS

Memory + Routine A state currently
loaded
CPU - Routine B state stored on
| — stack
» Routine switch from A — B
— saving state of Aa

Co-routines

regs, sp, pc
— restoring the state of B
regs, sp, pc

© Kevin Eghinstone.

/* save the

sw ra,
sw gp,
sw s8,
sw s,
sw s6,
sw s5,
sw sS4,
sw 3,
sw s2,
sw sl,
sw 0,
/* Store

sw sp,

THE UNIVERSY OF
NOW SOUTI WALTS

registers */
40 (sp)
36 (sp)
32(sp)
28 (sp)
24 (sp)
20 (sp)
16(sp)
12(sp)
8(sp)

4(sp)

0(sp)

the old stack pointer in the old pcb */
0(a0)

{

THE UNIVERSITY OF
NOW SOUTIT WALTS

EOU!IHE! !ou!me ! i

H .
v ! Yield
yield(a,b) —_— !
«
I
i
I
: !
y ! —————yield(b,a)
i
[
|
I
I
|
i
I
v !
yield(a,b) E—— } !

&cse

@

Whatis ‘a’?
int a; /* global */

int func() {
a=1;
func2();
if (a == 1) {
a=2;
¥
return a;

¥

THE UNIVERSITY OF
NOW SOUTIT WALTS

© Kevin Ephnstone.

#

Cooperative Multithreading

* Also called green threads

» Conservatively assumes a
multithreading model
—i.e. uses synchronisation to avoid races,
—and makes no assumption about
subroutine behaviour
- Everything thing can potentially yield()

. 21
THE UNIVERSY OF
NOW SOUTI WALTS ©Kouin Ehinstone

@

Coroutines

* What about subroutines combined with
coroutines
—i.e. what is the issue with calling
subroutines?
+ Subroutine calling might involve an
implicit yield()
— potentially creates a race on globals
- either understand where all yields lie, or
- cooperative multithreading

THE UNIVERSITY OF
NOW SOUTIT WALTS

20

© Kevin Ephnstone.

— OS/package related

Stack

fcse
Memory « Thread attributes
CPU — processor related
* memory
— | + program counter
« stack pointer
\ - registers (and status)

@

- state (running/blocked)

« identity

« scheduler (queues,
priority)

- eftc...

23

THE UNIVERSITY OF
NOW SOUTIT WALTS

© Kevin Elphnstone.

int a; /* global */

int func() {

block

Stack

int t;
lock_aquire(lock)
a=1;
func2();
if (a == 1) {
a=2;
}
t = a;
lock_release(lock);
return t;
}
@ | HE LAIVERSIEY OF 22
cse
Thread Control Block
Memory . To support more than a
CPU single thread we to
need store thread state
— | and attributes
_REZS \ + Stored in thread control

@

— also indirectly in stack

TCB
A

24

THE UNIVERSITY OF
NCw SOUTIT WALTS © Kevin Exgtinsione

Thread A and Thread B

Memory « Thread A state currently
loaded
« Thread B state stored in
TCBB
* Thread switch from A — B
— saving state of thread a
© regs, sp, pc
— restoring the state of thread B
© regs, sp, pc
» Note: registers and PC can
be stored on the stack, and
only SP stored in TCB

. 25
THE UNIVERSITY OF
NOW SOUTIT WALTS © Kevin Elghinstone.

0S/161 mips_switch

mips_switch:

/*
* a0 contains a pointer to the old thread's struct pcb.

* al contains a pointer to the new thread's struct pcb.

*

* The only thing we touch in the pcb is the first word, which
* we save the stack pointer in. The other registers get saved
* on the stack, namely:

*

* s0-s8

* gp, ra

*

*

The order must match arch/mips/include/switchframe.h.

*/

/* Allocate stack space for saving 11 registers. 11%*4 = 44 */
addi sp, sp, -44

. 27
THE UNIVERSY OF
NOW SOUTI WALTS

0S/161 mips_switch

/* Get the new stack pointer from the new pcb */
1w sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */

1w 50, 0(sp)
1w s1, 4(sp)
1w 52, 8(sp)
1w 53, 12(sp)
1w s4, 16(sp)
1w 55, 20(sp)
1w 56, 24(sp)
1w 57, 28(sp)
1w s8, 32(sp)
1w gp, 36(sp)
1w ra, 40(sp)
nop /* delay slot for load */

/* and return. */
3 ra

addi sp, sp, 44 /* in delay slot */

.end mips_switch 29
THE UNIVERSITY OF
NCW SOUTIT WALTS

Approximate OS

mi_switch ()
{

struct thread *cur, *next;
next = scheduler();

/* update curthread */
cur = curthread;
curthread = next;

e
* Call the machine-dependent code that actually does the
* context switch.

*/

md_switch (scur—>t_pcb, &next->t_pch) ;

/* back running in same thread */

}
. 26
THE UNIVERSITY OF
NCw SOUTIT WALTS © Kovin Bphiastone

0S/161 mips_switch

/* Save the registers */
sw ra, 40(sp)
sw gp, 36(sp)
sw s8, 32(sp)
sw s7, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw sl, 4(sp)
sw s0, 0(sp)

/* Store the old stack pointer in the old pch */
sw sp, 0(a0)

. 28
THE UNIVERSY OF
NOW SOUTI WALTS

reaaa real i

v
mips_switch(a,b) —}
'
'
I
'
'
'
'

«—— mips_gwitch(b,a)
|
«

v
mipsiswitch(a,b) ————>)
1

{

N 30
THE UNIVERSIY OF
NCW SOUTIT WALES

&cse

Preemptive Multithreading

« Switch can be triggered by
asynchronous external event
—timer interrupt

» Asynch event saves current state
—on current stack, if in kernel (nesting)

—on kernel stack or in TCB if coming from
user-level

+ call thread_switch()

31
THE UNIVERSITY OF
NCw SOUTIT WALTS © Kevin Exgtinsione

Threads on CPU with
protection

Kernel-only Memory User Memory « Whatis
- missing?

[REGS |
TCB TCB TCB
A B C
. 33
THE UNIVERSY OF

Threads on simple CPU

Memory

-
TCB TCB TCB
A B C
N 32
THE UNIVERSITY OF
_@ NCw SOUTIT WALTS © Kevin Exgtinsione

Threads on CPU with
protection

Kernel-only Memory User Memory

CPU

- o —
REGS

- What
happens on
Stack kernel entry

and exit?

]

fcse

Switching Address Spaces
on Thread Switch = Processes

Kernel-only Memory User Memory

CPU

Us$\\

/ REGS

Data /
4
Stack
Tce || Tes | | TcB
A B c

N 35
THE UNIVERSITY OF
NCW SOUTIT WALTS © Kevin Exgtinsione

. 34
THE UNIVERSY OF
NOW SOUTI WALTS © Kovin Ehinsione

Switching Address Spaces
on Thread Switch = Processes
Kernel-only Memory User Memory
CPU

User ——
==
[REGS |

TCB TCB TCB ﬁ
A B C

N 36
THE UNIVERSITY OF
NCw SOUTIT WALTS © Kevin Exgtinsione

&cse

What is this?

Kernel-only Memory User Memory

-

TCB TCB TCB
A B C
EiE\HtLMWM\H»

NOW SOUTIT WALTS

© Kevin Ephnstone.

37

What is this?

Kernel-only Memory User Memory

-

TCB TCB TCB
A B C

CPU
Scheduling
& Switermg———
{ SP
1 REGS
TcB | [T
1 2

© Kevin Ephnstone.

THE UNIVERSITY OF
NOW SOUTIT WALTS

38

User-level Threads

v Fast thread management (creation, deletion,
switching, synchronisation...)

% Blocking blocks all threads in a process
— Syscalls
— Page faults

% No thread-level parallelism on multiprocessor

cse
User-level Threads
User Mode
(Scheduler) (Scheduer]
Process
Scheduler
Kernel Mode
#cse
Kernel-Level Threads
User Mode
Kernel Mode

THE UNIVERSY OF
NOW SOUTI WALTS

Kernel-level Threads

% Slow thread management (creation, deletion,
switching, synchronisation...)
» System calls

v Blocking blocks only the appropriate thread in
a process

v Thread-level parallelism on multiprocessor

THE UNIVERSITY OF
NOW SOUTIT WALTS

&cse

Continuations (in
Functional Languages)

 Definition of a Continuation

— representation of an instance of a
computation at a point in time

THE UNIVERSIHTY OF 43
-@ NOW SOUTIT WALTS © Kevin Exgtinsione
Cse
—{} (call-with-current-continuation f)
f
(x return_arg)
D)
@ |HE GAIVERSILY OF 45
N SRS I
fcse
Simple Example
(define (f arg)
(arg 2)
3)
(display (f (lambda (x) x))); displays 3
(display (call-with-current-continuation f))
;displays 2
verived from heto:/ i /a1t -wieh-cor
47

© Kevin Elphnstone.

THE UNIVERSITY OF
NOW SOUTIT WALTS

call/ccin Scheme

call/cc=-call-with-current-continuation

A function
—takes a function (f) to call as an argument
— calls that function with a reference to
current continuation (cont) as an
argument
—when cont is later called, the continuation
is restored.
» The argument to cont is returned from to the

-@ oo Caller of call/cc 4
NCW SOUTIT WALES ©Kevin Ephinsione
» For C-programmers, call/cc is effectively
saving stack, and PC
. 46
[HE LNIVERSITY O
cse
(define the-continuation #f)
(define (test)

(Tet (G 0))

; call/cc calls its first function argument, passing

; a continuation variable representing this point in

; the program as the argument to that function.

; In this case, the function argument assigns that

; continuation to the variable the-continuation.

(call/cc (lambda (k) (set! the-continuation k)))

; The next time the-continuation is called, we start here.
(set! i (+ 1 1))

i)

48

THE UNIVERSITY OF
NOW SOUTIT WALTS

© Kevin Elphnstone.

&cse

E

Another Simple Example

> (test)
1
> (the-continuation)
2
> (the-continuation)
3
> ; stores the current continuation (which will print 4 next) away
> (define another-continuation the-continuation)

> (test) ; resets the-continuation
1
> (the-continuation)
2
> (another-continuation) ; uses the previously stored continuation
4

Derived fron http://en.wikipedia.org/wiki/Continuation

#

E

Yet Another Simple Example

;33 Return the first element in LST for which WANTED? returns a true
555 value.
(define (search wanted? 1st)
(call/cc (lambda (arg)
(for-each (lambda (element)
(if (wanted? element)
(arg element)))
1st)
#)))

Derived fron http: //comunity. schemawiki.org/?call-with-current-continuation

fcse

E

THE UNIVERSITY OF 49
Coroutine Example
;53 This starts a new routine running (proc).
(define (fork proc)
(call/cc (lambda (k)
(enqueue k)
(proc))))
;53 This yields the processor to another routine, if there is one.
(define (yield)
(call/cc
(lambda (k)
(enqueue k)
((dequeue)))))
THE UNIVERSHY OF 51
’
What should be a kernel’s
execution model?
Note that the same question can be
asked of applications
53

THE UNIVERSITY OF
NOW SOUTIT WALTS

© Kevin Elphnstone.

@

THE LAIVERSILY OF 50
Continuations
» A method to snapshot current state and
return to the computation in the future
* In the general case, as many times as
we like
+ Variations and language environments
(e.g. in C) result in less general
continuations
— e.g. one shot continuations,
setjmp()/longjump()
52

THE UNIVERSY OF
NOW SOUTI WALTS © Kovin Ehinsione

E

The two alternatives

No one correct answer
From the view of the designer there are two alternatives.

Single Kernel Stack Per-Thread Kernel Stack
Only one stack is

used all the time to support
all user threads.

Every user thread has a
kernel stack.

THE UNIVERSITY OF
NOW SOUTIT WALTS

« Athread’s kernel state is implicitly
encoded in the kernel activation
stack

— If the thread must block in-
kernel, we can simply switch
from the current stack, to
another threads stack until
thread is resumed

— Resuming is simply switching
back to the original stack

— Preemption is easy

THE UNIVERSITY OF
NOW SOUTIT WALTS

Per-Thread Kernel Stack

Processes Model
example (argl, arg2) {
Pl (argl, arg2);
if (need_to_block) {
thread_block () ;
P2 (arg2) ;
} else {
P3();
}
/* return control to user */
return SUCCESS;

blocked thread is explicitly
saved ina TCB
« A function pointer
- Variables
« Stack can be discarded and
reused to support new
thread }
* Resuming involves
discarding current stack, }

and continuing

THE UNIVERSY OF
NOW SOUTI WALTS

Continuations

« State required to resume a example(argl, arg2) {
Pl(argl, arg2);
if (need_to_block) {

save_arg_in_ TCB;
thread block (example_continue);
/* NOT REACHED */

} else {

P30Q);

thread syscall return (SUCCESS);

restoring the continuation, ~example_continue() {
recover_arg2_ from_ TCB;

P2 (recovered arg2);
thread_syscall_return (SUCCESS);

Single Kernel Stack
“Event” or “Interrupt” Model
* How do we use a single kernel stack to
support many threads?
— Issue: How are system calls that block handled?
= either continuations

Using Continuations to Implement Thread Management
and Communication in Operating Systems. [Draves et
al., 1991]

= or stateless kernel (event model)

« Interface and Execution Models in the Fluke Kernel.
[Ford et al., 1999]

+ Also seL4

THE UNIVERSITY OF
NOW SOUTIT WALTS

msg_send_rcv(msg, option,

send_size, rcv_size, ...)

rc = msg_send(msg, option,
send_size, ...);

if (rc != SUCCESS)

return rc;

THE UNIVERSITY OF
NOW SOUTIT WALTS

rc = msg_rcv(msg, optio: rcv_size, ...);
return rc;

IPC implementation examples
— Per thread stack

Send and Receive
system call

(implemented by a
non-blocking send
part and a blocking
receive part.

Block inside
msg_rcv if no
message
available

@

Stateless Kernel

» System calls can not block within the kernel

— If syscall must block (resource unavailable)

- Modify user-state such that syscall is restarted when
resources become available

- Stack content is discarded (functions all return)
» Preemption within kernel difficult to achieve.
= Must (partially) roll syscall back to a restart point
+ Avoid page faults within kernel code
= Syscall arguments in registers

+ Page fault during roll-back to restart (due to a page fault)
is fatal.

THE UNIVERSY OF
NOW SOUTI WALTS

@

IPC examples - Continuations

msg_send_rcv(msg, option,

send_size, rcv_size, ...) {
rc = msg_send(msg, option,
send_size, ...);
if (rc != SUCCESS)

return rc;
cur_thread->continuation.msg = msg;
cur_thread->continuation.option = option;
cur_thread->continuation.rcv_size = rcv_size;

rc = msg_rcv(msg, option, rcv_size, ...,

msg_rcv_continue); —m8
return rc;
}
msg_rcv_continue() {
msg = cur_thread->continuation.msg;
option = cur_thread->continuation.option;

The function to
continue with if
blocked

rcv_size = cur_thread->continuation.rcv_size;

rc = msg_rcv(msg, option, rcv_size, ..
msg_rcv_continue);
return rc;

T A
NOW SOUTIT WALTS

10

@

IPC Examples — stateless
kernel

msg_send_rcv(cur_thread) {
rc = msg_send(cur_thread);

if (rc != SUCCESS)

return rc;
. Set user-level PC

to restart msg_rcv
rc = msg_rcv(cur_thread);

only
if (rc == WOULD_BLOCK) {
set_pc(cur_thread, msg_rcv_entry);
return RESCHEDULE;
}
return rc;
}
RESCHEDULE changes
curthread on exiting the
KR Lt

#

Per-Thread Kernel Stack

+ simple, flexible
kernel can always use threads, no special techniques
required for keeping state while interrupted / blocked
no conceptual difference between kernel mode and user
mode
e.g. traditional L4, Linux, Windows, OS/161

 but larger cache footprint
+ and larger memory consumption

THE UNIVERSY OF
NOW SOUTI WALTS

@

Single Kernel Stack

. either continuations per Processor, event model
complex to program
must be conservative in state saved (any state that might be
needed)
Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

* or stateless kernel
no kernel threads, kernel not interruptible, difficult to program
request all potentially required resources prior to execution
blocking syscalls must always be re-startable
Processor-provided stack management can get in the way
system calls need to be kept simple “atomic”.
e.g. the fluke kernel from Utah

+ low cache footprint
always the same stack is used !
reduced memory footprint

THE UNIVERSITY OF
NOW SOUTIT WALTS

11

