COMP9242 Advanced OS

.
-
N\/ W S2/2016 WO01: Introduction to seL4
AUSTRALIA @GernotHeiser
Never Stand Still Engineering Computer Science and Engineering

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work
— to remix—to adapt the work

» under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

Monolithic Kernels vs Microkernels

* ldea of microkernel:
— Flexible, minimal platform
— Mechanisms, not policies
— Goes back to Nucleus [Brinch Hansen, CACM’70]

Application Syscall

Device
Application Driver

IPC, virtual memory

Hardware Hardware

AAAAAAAAA

Microkernel Evolution

First generation Second generation Third generation

* Eg Mach ['87]

Eg L4 [95] . sel4 [09]

o — >~
e Comﬁsite kernel

Memory Objects
L does user-mode
ow-level FS, f Memory-
Swapping scheduling mangmt
Devices (OB iibrary
e emo Kernel memory o=
eduling Scheduling Scheduling
IPC, MMU abstr.
+ 180 syscalls * ~7 syscalls + ~3syscalls
+ 100 kLOC + ~10kLOC + 9kLOC
+ 100 us IPC « ~1pslIPC * 0.1uslIPC
* capabilities
» design for isolation
4 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License uN_SW

(Bt

2nd_-Generation Microkernels

+ 1st-generation kernels (Mach, Chorus) were a failure
— Complex, inflexible, slow

e L4 was first 2G microkernel [Liedtke, SOSP’93, SOSP’95]
— Radical simplification & manual micro-optimisation

— “A concept is tolerated inside the microkernel only if moving it outside
the kernel, i.e. permitting competing implementations, would prevent the
implementation of the system’s required functionality.”

— High IPC performance
« Family of L4 kernels:
— Original Liedtke (GMD) assembler kernel (‘95)
Family of kernels developed by Dresden, UNSW/NICTA, Karlsruhe
— Commercial clones (PikeOS, P4, CodeZero, ...)
Influenced commercial QNX (‘82), Green Hills Integrity (‘90s)
Generated NICTA startup Open Kernel Labs (OK Labs)
o large-scale commercial deployment (multiple billions shipped)

=
5 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AAAAAAAAA
Byt

L4: A Family of High-Performance Microkernels

—< T T

First L4

* iossecurity . (kemel with
W capabilities
. \ O
API Inheritance ©
—_—

Code Inheritance
—_—

L4/MIPS

L4/Alpha Codezer
Qualcomm

— modem chips

Pistachio

I'93 194 195 196 197 198 199 100 01 T02 T03 104 To5s T06 107 108 109 110 111 112 143

P4 — PikeOS]

=
6 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AAAAAAAAA
|t

Issues of 2G Microkernels

* L4 solved performance issue [Hartig et al, SOSP’97]

» Left a number of security issues unsolved

* Problem: ad-hoc approach to protection and resource management
— Global thread name space = covert channels [Shapiro’03]
— Threads as IPC targets = insufficient encapsulation

Single kernel memory pool = DoS attacks

Insufficient delegation of authority = limited flexibility,
performance

Unprinciple management of time

« Addressed by seL4
— Designed to support safety- and security-critical systems
— Principled time management not yet mainline (RT branch)

AAAAAA

sel4 Principles

» Single protection mechanism: capabilities
— Proper time management to be finished this year
« All resource-management policy at user level
— Painful to use
— Need to provide standard memory-management library
o Results in L4-like programming model
» Suitable for formal verification (proof of implementation correctness)
— Attempted since ‘70s

— Finally achieved by L4.verified project
at NICTA [Klein et al, SOSP’09]

—
8 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW
S

< 7\
Note: differences
between AOS and
mainline kerne!s!

seL4 Concepts . .

» Capabilities (Caps)
— mediate access ——— (m

« Kernel objects:

Threads (thread-control blocks: TCBs)

Address spaces (page table objects: PDs, PTs)

Endpoints (IPC EPs, Notification AEPS)\
Capability spaces (CNodes
Cpmes e (@0
Ny,
Interrupt objects U *=

Untyped memory

» System calls -

— Send, Wait (and variants)
— Yield

3

=
9 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW
[N

What are (Object) Capabilities?

P

Cap = Access Token:
Prima-facie evidence
\of privilege

Cwe

Obj reference

Eg. thrm

file, ...

Access right

Eg. read,
write, send,
execute...

Cap typically in kernel to

« OOAPI: protect from forgery
err = method(cap, args);

* Used in some earlier microkernels:

— KeyKOS ['85], Mach ['87], EROS ['99]

» user references cap
through handle

=
10 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW

AUSTRALIA
|t

C» selL4 Capabilities

» Stored in cap space (CSpace) C
— Kernel object made up of CNodes
— each an array of cap “slots”
* Inaccessible to userland
— But referred to by pointers into CSpace (slot addresses)
— These CSpace addresses are called CPTRs
» Caps convey specific privilege (access rights)
- Read, Write, Grant (cap transfer)e o)
* Main operations on caps:
— Invoke: perform operation on object referred to by ¢
o Possible operations depend on object type
— CopylMint/ Grant: create copy of cap with samel/lesser privilege
— Movel Mutate: transfer to different address with same/lesser privilege
— Delete: invalidate slot (cleans up object if this is the only cap to it)
— Revoke: delete any derived (eg. copied or minted) caps

>\
Mainline has
Execute too ™~

11 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

Inter-Process Communication (IPC)

* Fundamental microkernel operation
— Kernel provides no services, only mechanisms
— OS services provided by (protected) user-level server processes

— invoked by IPC

» selL4 IPC uses a handshake through endpoints:

— Transfer points without storage capacity)
. send receive
— Message must be transferred instantly

o Single-copy user — user by kernel

AAAAAA

@ IPC: (Synchronous) Endpoints

Thread, Thread,
Running Blocked Blocked Running
2 Wait (ep1_cap, ...)

Send (ep1_cap,)_@_} |
Wait (ep2_cap, ...) 2
....... | (_@_ Send (ep2_cap, ...)
E E

* Threads must rendez-vous for message transfer
— One side blocks until the other is ready
— Implicit synchronisation
* Message copied from sender’s to receiver's message registers
— Message is combination of caps and data words
o Presently max 121 words (484B, incl message “tag”)
o Should never use anywhere near that much!

13 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License uNSW

AAAAAAA
[=ee

@ IPC Endpoints are Message Queues

Client,

Client, 2

Sl EeEan » EP has no sense of direction

queues caller « May queue senders or receivers

Further callers of both h . |

same direction — never both at the same time!
queue behind « Communication needs 2 EPs!

AAAAAA

@ Client-Server Communication

* Asymmetric relationship:

— Server widely accessible, clients not Client,
— How can server reply back to

client (distinguish between them)?

» Client can pass (session) reply cap in first request
— server needs to maintain session state
— forces stateful server design

» sel4 solution: Kernel provides single-use reply cap
— only for Call operation (Send+Wait)
— allows server to reply to client
— cannot be copied/minted/re-used but can be moved
— one-shot (automatically destroyed after first use)

15 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License LJ;N”SAW
Bl

Client Kernel Server
Wait(ep,&rep)
Calli(ep,...)
mint rep
deliver to server
process
Send(rep,...)
deliver to client
destroy rep
process process

16 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License uiN'SAW
=

(@0 dentifying Clients

Stateful server serving multiple clients
* Must respond to correct client

— Ensured by reply cap Client,
QY-
* Must associate request Client
with correct state 2 Client, \/
m state :

* Could use separate EP per client
— endpoints are lightweight (16 B)
— but requires mechanism to wait on a set of EPs (like select)

* Instead, seL4 allows to individually mark (“badge”) caps to same EP
— server provides individually badged caps to clients
— server tags client state with badge (through Mint())
— kernel delivers badge to receiver on invocation of badged caps

17 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

AUSTRALIA

UNSW

[

@@ IPC Mechanics: Virtual Registers

« Like physical registers, virtual registers are thread state
— context-switched by kernel
— implemented as physical registers or thread-local memory
* Message registers
— contain message transferred in IPC
— architecture-dependent subset mapped to physical registers
o 50onARM, 3 on x86
— library interface hides details
o 1%t transferred word is special, contains message tag
— API MRJ[0] refers to next word (not the tag!)
* Reply cap
— overwritten by next receive!
— can move to CSpace with cspace_save_reply_cap()

UNSW

AUSTRALIA

18 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

@@ IPC Message Format

Raw data

Caps (on Send) CSpace reference for receiving
Badges (on Receive) | caps (Receive only)

Tag Message

Caps # Msg

Label unwrapped Cz:;ps Length

Meaning defined
by IPC protocol
(Kernel or user)

Bitmap indicating
caps which had Caps s_ent
badges extracted or received

Note: Don’t need to deal with this explicitly for project

UNSW

AUSTRALIA

19 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

@@ Client-Server IPC Example

Load into Client
fagegistar seL4_Messagelnfo_t tag = seL4_MessageInfo_new(0, O, O, 1);

seL4_SetTag(tag);
Set message seL4_SetMR(0,1);
register #0 seL4_Call(server_c, tag);

Allocate EP and retype

Server

seL.4_Word addr = ut_alloc(seL4_EndpointBits);

err = cspace_ut_retype_addr(tcb_addr, seL.4_EndpointObject,
seL4_EndpointBits, cur_cspace, &ep_cap)

seL4_CPtr cap = cspace_mint_cap(dest, cur_cspace, ep_c eL4_all_rights.
seL4_CapData_Badge_new(0xff)); Insert EP into

CSpace

seL4_Word badge;

seL4_MessageInfo_t msg = seL.4_Wait(ep, &badge); Cap is badged Oxff

seL4_MessageInfo_t reply = seL4_Messagelnfo_new(0, O, O, 0);

sel4_Reply(reply); Implicit use
of reply cap

20 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License g UN W
e

AUSTRALIA

@@ Server Saving Reply Cap

Server

Save reply cap

X X in CSpace
err = cspace_ut_retype_addr(tcb_addr, seL.4_EndpointObject,

seL4_EndpointBits, cur_cspace, &ep_cap)

seL4_CPtr slot = cspace_save_reply_cap(cur_cspace);

seL4_Send(slot, reply);

cspace_free_slot(slot); —
Explicit use
S of reply cap

Reply cap no
longer valid

=
21 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License
Be

@@ IPC Operations Summary

* Send (ep_cap, ...), Wait (ep_cap, ...)
— blocking message passing
— needs Write, Read permission, respectively
* NBSend (ep_cap, ...)
— Polling send: silently discard message if receiver isn’t ready
* (Call (ep_cap, ...)
— equivalent to Send (ep_cap,...) + reply-cap + Wait (ep_cap,...)
— Atomic: guarantees caller is ready to receive reply
* Reply(...) N /d*f V\)
; eed error
— equivalent to Send (rep_cap, ...) el
protocol !

* ReplyWait (ep_cap, ...)
— equivalent to Reply (...) + Wait (ep_cap, ...)
— at present solely for efficiency of server operation 0

No failure notification where this reveals info on other entities!

22 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

@ Notifications: Asynchronous Endpoints

» Logically, AEP is an array of binary semaphores
— Multiple signalling, select-like wait
— Not a message-passing IPC operation!

+ Implemented by Threald1 Thread, .
) Runnin Blocked Blocked Runnin
data word in AEP unning - Flese oered G Ranning
— Send OR-s sender’s w = Poll (ep_cap, ...)
cap badge to data word

— Receiver can poll or wait | ----- w = Wait (ep_cap,...)
o waiting returns and Notify (aep_cap,)—ﬁ I;»

clears data word)
Notify (aep_cap, ...

o polling just returns
data word

AAAAAA

@@[% Receiving from EP and AEP

Client Driver

Server with synchronous and asynchronous interface
* Example: file system
— synchronous (RPC-style) client protocol
— asynchronous notifications from driver
» Could have separate threads waiting on endpoints
— forces multi-threaded server, concurrency control
« Alternative: allow single thread to wait on both EP types
— AEP is bound to thread with BindAEP() syscall
— thread waits on synchronous endpoint
— Notification delivered as if caller had been waiting on AEP

AAAAAA

@@@ AOS vs Mainline Kernel Differences

* “Synchronous” vs “asynchronous” endpoint terminology is confusing
» sel4 really has only synchronous IPC, plus signal-like notifications
* Fixed in recent mainline kernels

AOS Kernel Mainline
* Sync EP, sync message » EP, message
» AEP, async notification » Notification obj, notification
» Send/Receive/Call/Reply&Wait + Send/Receive/Call/Reply&Wait
* NBSend (EP) * NBSend, Poll, NBReply&Wait
*« AEP: NBSend, Wait » Signal, Poll, Wait

AAAAAAAAA

¢ Derived Capabilities

» Badging is an example of capability derivation
» The Mint operation creates a new, less powerful cap

— Can add a badge N
o Mint (&%, ¥) - & // Remember,

— Can strip access rights W
o eg WR—R/O o .
* Granting transfers caps over an Endpoint ¢
— Delivers copy of sender’s cap(s) to receiver
o reply caps are a special case of this
— Sender needs Endpoint cap with Grant permission
— Receiver needs Endpoint cap with Write permission
o else Write permission is stripped from new cap
* Retyping
— Fundamental operation of seL4 memory management
— Details later...

AAAAAAAAA

@ w seL4 System Calls

— ~ \/r\\

(Will change
« Notionally, seL4 has 6 syscalls: - soon
— Yield(): invokes scheduler) :
o only syscall which doesn’t require a capf
— Send(), Receive() and 3 variants/combinations thereof
o Notify() is actually not a separate syscall but same as Send()
— This is why | earlier said “approximately 3 syscalls” ©

O

» All other kernel operations are invoked by “messaging”
— Invoking Call() on an object cap
o Logically sending a message to the kernel
— Each object has a set of kernel protocols
o operations encoded in message tag
o parameters passed in message words
— Mostly hidden behind “syscall” wrappers

==
27 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License LJNSW
B

AAAAAAA

seL4 Memory-Management Principles

* Memory (and caps referring to it) is typed:
— Untyped memory:
o unused, free to Retype into something else
— Frames:
o (can be) mapped to address spaces, no kernel semantics
— Rest: TCBs, address spaces, CNodes, EPs
o used for specific kernel data structures
« After startup, kernel never allocates memory!
— All remaining memory made Untyped, handed to initial address space
» Space for kernel objects must be explicitly provided to kernel
— Ensures strong resource isolation
« Extremely powerful tool for shooting oneself in the foot!
— We hide much of this behind the cspace and ut allocation libraries

AAAAAA

@!W Capability Derivation
* Copy, Mint, Mutate, Revoke are invoked on CNodes

Mint(C#®, dest, src, rights,V)

— CNode cap must provide appropriate rights
* Copy takes a cap for destination
— Allows copying of caps between Cspaces
— Alternative to granting via IPC (if you have privilege to access Cspace!)

29 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

AUSTRALIA

UNSW

[=ee

@!W Cspace Operations

extern cspace_t * cspace_create(int levels); /* either 1 or 2 level */
extern cspace_err_t cspace_destroy(cspace_t *c);

extern seL4_CPtr cspace_copy_cap(cspace_t *dest, cspace_t *src,
seL4_CPtr src_cap, seL4_CapRights rights);

extern seL4_CPtr cspace_mint_cap(cspace_t *dest, cspace_t *src,
selL4_CPtr src_cap, seL4_CapRights rights,
selL4_CapData badge);

extern seL4_CPtr cspace_move_cap(cspace_t *dest, cspace_t *src,
seL4_CPtr src_cap);

extern cspace_err_t cspace_delete_cap(cspace_t *c, seL4_CPtr cap);

extern cspace_err_t cspace_revoke_cap(cspace_t *c, seL4_CPtr cap);

AUSTRALIA

30 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW
|

cspace and ut libraries

(OF]
Personality

ut_alloc()
ut_free()

cspace_create()
cspace_destroy()

Wraps messy
Cspace tree &
slot management

Manages slab
of Untyped

Extend for
— own needs!

STRALL

=
31 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License UNSW
[

@% seL4 Memory Management Approach

Strong isolation,
No shared kernel
resources

Addr

Resources fully
delegated, allows
autonomous
operation

Resource Manager Resource Manager

RM
Data

RAM | Kemel| GRM
Data Data

_— sutontieerse 5 UNS
32 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License B NV
B

Memory Management Mechanics: Retype

(=4

Retype (Untyped, 2 / Malnllne and

N

UQ/ AOS kernels

differ, both
more general -

Retype (Frame, 22) Retype (Untyped, 21

LW , r, I3
Cw S G G Cwr G
Mint (1) Retype (CNode, 2™m, 2") Retype (TCB, 2")
. Revoke()
Fo F, F, Fs

33 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

A selL4 Address Spaces (VSpaces)

« Very thin wrapper around hardware page tables
— Architecture-dependent
— ARM and (32-bit) x86 are very similar

» Page directories (PDs) map page tables, @W_i ’
page tables (PTs) map pages

* AVSpace is represented
by a PD object:
— Creating a PD (by Retype)
creates the VSpace Page_Map(PT)
Deleti o=
— Deleting the PD deletes /
the VSpace

q

PageTable_Map(PD)

34 CcoMP9242 S2/2015 W1 © 2016 Gernot Heiser. Distributed under CC Attribution License

A Address Space Operations

seL4_Word frame_addr = ut_alloc(seL4_. Pa.ge'
err = cspace_ut_retype_addr(frame_add:

cap to level 1
page table

seL4_ARM_PageBits, cur_r~ ace, &'fra.me _cap);

map_page(frame_cap, pd_cap, 0xA0000000, seL4_AllRights,

seL4_ARM_Default_VMAttributes);

bzero((void *)OxA0000000, PAGESIZE);

« Each mapping has:
— virtual_address, phys_address, address_space and frame_cap
— address_space struct identifies the level 1 page_directory cap
— you need to keep track of (frame_cap, PD_cap, v_adr, p_adr)!

seL4_ARM_Page_Unmap(frame_cap);
cspace_delete_cap(frame_cap) " > N\

ut_free(frame_addr, seL4_PageBits); O (Poor API

35 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

A Multiple Frame Mappings: Shared Memory

seL4_CPtr new_frame_cap = cspace_copy_cap(cur_cspace, Cur_cspace,
existing_frame_cap,
seL4_AllIRights);

map_page(new_frame_cap, pd_cap, OxA0000000, seL4_AllRights,
seL4_ARM_Default_VMAttributes);
bzero((void *)OxA0000000, PAGESIZE);

seL4_ARM_Page_Unmap(existing frame_cap);
cspace_delete_cap(existing_frame_cap)
seL4_ARM_Page_Unmap(new_frame_cap);
cspace_delete_cap(new_frame_cap)
ut_free(frame_addr, seL4_PageBits);

« Each mapping requires its own frame cap even for the same frame

A Memory Management Caveats

* The object manager handles allocation for you
« Very simple buddy-allocator, you need to understand how it works:
— Freeing an object of size n: you can allocate new objects <= size n

— Freeing 2 objects of size n does not mean that you can allocate an
object of size 2n.

Object Size (B), ARM Alignment (B), ARM

Frame 212 212

Page directory 24 214

Endpoint 24 24 = —< 7 T
Implementation

Cslot 24 24 — choice!

Cnode 214, © 14 . /

TCB 29 29

Page table 20 210

37 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

A Memory-Management Caveats

* Objects are allocated by Retype() of Untyped memory L
- The kernel will not allow you to overlap objects: o (, (Butdebugging
» ut_alloc and ut_free() manage user-level's view of mghtmarﬁ it

Untyped allocation. you try!

— Major pain if kernel and user’s view diverge

— TIP: Keep objects address and CPtr together.

» Be careful with allocations!

« Don't try to allocate all of physical
memory as frames, you need more
memory for TCBs, endpoints etc.

* Your frametable will eventually

integrate with ut_alloc to manage

the 4KiB untyped size.

Untyped Memory 2'5B

8 frames

38 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

3 Threads

* Theads are represented by TCB objects
* They have a number of attributes (recorded in TCB):
— VSpace: a virtual address space
o page directory reference
o multiple threads can belong to the same VSpace
— CSpace: capability storage
o CNode reference (CSpace root) plus a few other bits
— Fault endpoint
o Kernel sends message to this EP if the thread throws an exception
— IPC buffer (backing storage for virtual registers)
— stack pointer (SP), instruction pointer (IP), user-level registers

— Scheduling priority -
~ Time slice length (presently a system-wide cops*ant* Y;Sﬁ’llglga)k;; D

* These must be explicitly managed Fixedin later
— ... we provide an example you can modify kernels

39 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

3 Threads

Creating a thread
« Obtain a TCB object
« Set attributes: Configure()

— associate with VSpace, CSpace, fault EP, prio, define IPC buffer
» Set SP, IP (and optionally other registers): WriteRegisters()

— this results in a completely initialised thread

— will be able to run if resume_target is set in call, else still inactive
* Activated (made schedulable): Resume()

40 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

3 Creating a Thread in Own AS and Cspace

static char stack[100];

int thread_fet() {
while(1);
return O;

}

/* Allocate and map new frame for IPC buffer as before */

seL.4_Word tcb_addr = ut_alloc(seL.4_TCBBits);

err = cspace_ut_retype_addr(tcb_addr, seL.4_TCBObject, seL4_TCBBits,
cur_cspace, &tcb_cap)

err = seL.4_TCB_Configure(tcb_cap, FAULT_EP_CAP, PRIORITY,

curspace->root_cnode, seL.4NilData,
seL4_CapInitThreadPD, seL4_NilData,
PROCESS_IPC_BUFFER, ipc_buffer_cap);

seL4_UserContext context = { .pc = &thread, .sp = &stack};
seL4_TCB_WriteRegisters(tcb_cap, 1, O, &, &econtext);

If you use threads, write a library to create and destroy them.

41

c

NSW

B s Al
i

COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License :

3 Threads and Stacks

» Stacks are completely user-managed, kernel doesn’t care!
— Kernel only preserves SP, IP on context switch
» Stack location, allocation, size must be managed by userland
* Beware of stack overflow!
— Easy to grow stack into other data
o Pain to debug!
— Take special care with automatic arrays!

Stack 1 Stack 2

fO{
int buf[10000];

UNSW

AUSTRALIA

42 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

3

Creating a Thread in New AS and CSpace

/* Allocate, retype and map new frame for IPC buffer as before
* Allocate and map stack?%?
* Allocate and retype a TCB as before
* Allocate and retype a seL4_ARM_PageDirectoryObject of size seL.4_PageDirBits
* Mint a new badged cap to the syscall endpoint

*/

cspace_t * new_cpace = ut_alloc(seL.4_TCBBits);

char
err =

*elf_base = cpio_get_file(_cpio_archive, “test”)->p_base;
elf_load(new_pagedirectory_cap, elf_base);

unsigned int entry = elf_getEntryPoint(elf_base);

new_cspace->root_cnode
new_pagedirectory_cap

entry

43 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License @ UNSW
B

AUSTRALIA

_(~ Better model in)\
/

3 selL4 Scheduling

C “RT”branch — -

* Present seL4 scheduling model is fairly naive®
» 256 hard priorities (0-255)

— Priorities are strictly observed

— The scheduler will always pick the highest-prio runnable thread

— Round-robin scheduling within prio level
* Aim is real-time performance, not fairness

— Kernel itself will never change the prio of a thread

— Achieving fairness (if desired) is the job of user-level servers

"—H-\I\:%:Pr'io é:\l\—h—ﬁﬁ

VS TRALIA

44 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License E UNSW

S

3 Exception Handling

« Athread can trigger different kinds of exceptions:
invalid syscall
o may require instruction emulation or result from virtualization
capability fault
o cap lookup failed or operation is invalid on cap
page fault
o attempt to access unmapped memory
o may have to grow stack, grow heap, load dynamic library, ...
architecture-defined exception
o divide by zero, unaligned access, ...
* Results in kernel sending message to fault endpoint
— exception protocol defines state info that is sent in message
* Replying to this message restarts the thread
— endless loop if you don’t remove the cause for the fault first!

45 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

@ Interrupt Handling

IRQ triggered.
Kernel fakes
notification on AEP

Handler performs
appropriate action.

Interrupt
handler
(driver)

Handler waits
on AEP

Kernel ACKs IRQ

46 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

% Interrupt Management

» selL4 models IRQs as messages sent to an AEP
— Interrupt handler has Receive cap on that AEP
» 2 special objects used for managing and acknowledging interrupts:
— Single IRQControl object
o single IRQControl cap provided by kernel to initial VSpace
o only purpose is to create IRQHandler caps
— Per-IRQ-source IRQHandler object
o interrupt association and dissociation
o interrupt acknowledgment

= IRQControl

%> Get(usb)
% IRQHandler

- — G

47 COMP9242 S2/2015 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

% Interrupt Handling

* IRQHandler cap allows driver to bind AEP to interrupt
« Afterwards:

— AEP is used to receive interrupt

— IRQHandler is used to acknowledge interrupt

IRQHandler
/-T. C SetEndpoint(aep)
&
Wait(aep)
Ack(handler)

seL4_IRQHandler interrupt = cspace_irq_control_get_cap(cur_cspace,

seL4_CapIRQControl, irg_number);
seL4_IRQHandler_SetEndpoint(interrupt, async_ep_cap);
seL.4_IRQHander_ack(interrupt);

ACK first to
unmask IRQ
48 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License

3 Device Drivers

* In selL4 (and all other L4 kernels) drivers are usermode processes
* Drivers do three things:

— Handle interrupts (already explained)

— Communicate with rest of OS (IPC + shared memory)

— Access device registers
» Device register access

— Devices are memory-mapped on ARM

— Have to find frame cap from bootinfo structure

— Map the appropriate page in the driver’s VSpace

device_vaddr = ma.p_device(OxAOOQQOOO, (1 << seL4_PageBits));

*((void *) device_vaddr=...; \ ;

‘ Magic device ‘
_ register access

AAAAAAAAA

Project Platform: i.MX6 Sabre Lite

seL4_DebugPutChar()

Memory
Cgig(vlg MO — serial over LAN
CPU Timer & for userlevel apps
other Ethernet
devices M6 — Network File

System (NFS)

AAAAAAAAA

50 COMP9242 S2/2016 W01 © 2016 Gernot Heiser. Distributed under CC Attribution License @ UNSW

in the Real World (Courtesy Boeing, DARPA)

