
COMP9242 Advanced OS
S2/2016 W01: Introduction to seL4
@GernotHeiser

2 © 2016 Gernot Heiser. Distributed under CC Attribution License

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:

–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Australia”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2016 W01

3 © 2016 Gernot Heiser. Distributed under CC Attribution License

Monolithic Kernels vs Microkernels

•  Idea of microkernel:
–  Flexible, minimal platform
–  Mechanisms, not policies
–  Goes back to Nucleus [Brinch Hansen, CACM’70]

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
Server

Device
Driver

Syscall

IPC

Kernel
Mode

User
Mode

COMP9242 S2/2016 W01

4 © 2016 Gernot Heiser. Distributed under CC Attribution License COMP9242 S2/2016 W01

Microkernel Evolution

IPC, MMU abstr.
Scheduling

Kernel memory
Devices

Low-level FS,
Swapping

Memory Objects

IPC, MMU abstr.
Scheduling

Memory-
mangmt
library

IPC, MMU abstr.
Scheduling

Kernel memory

First generation

•  Eg Mach [’87]

Third generation

•  seL4 [’09]

Second generation

•  Eg L4 [’95]

•  180 syscalls
•  100 kLOC
•  100 µs IPC

•  ~7 syscalls
•  ~10 kLOC
•  ~ 1 µs IPC

•  ~3 syscalls
•  9 kLOC
•  0.1 µs IPC
•  capabilities
•  design for isolation

Composite kernel
does user-mode

scheduling

5 © 2016 Gernot Heiser. Distributed under CC Attribution License

2nd-Generation Microkernels

•  1st-generation kernels (Mach, Chorus) were a failure
–  Complex, inflexible, slow

•  L4 was first 2G microkernel [Liedtke, SOSP’93, SOSP’95]
–  Radical simplification & manual micro-optimisation
–  “A concept is tolerated inside the microkernel only if moving it outside

the kernel, i.e. permitting competing implementations, would prevent the
implementation of the system’s required functionality.”

–  High IPC performance
•  Family of L4 kernels:

–  Original Liedtke (GMD) assembler kernel (‘95)
–  Family of kernels developed by Dresden, UNSW/NICTA, Karlsruhe
–  Commercial clones (PikeOS, P4, CodeZero, …)
–  Influenced commercial QNX (‘82), Green Hills Integrity (‘90s)
–  Generated NICTA startup Open Kernel Labs (OK Labs)

o  large-scale commercial deployment (multiple billions shipped)

COMP9242 S2/2016 W01

6 © 2016 Gernot Heiser. Distributed under CC Attribution License

L4: A Family of High-Performance Microkernels

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVA GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

API Inheritance

Code Inheritance

Qualcomm
modem chips

iOS security
co-processor

First L4
kernel with
capabilities

COMP9242 S2/2016 W01

7 © 2016 Gernot Heiser. Distributed under CC Attribution License

Issues of 2G Microkernels

•  L4 solved performance issue [Härtig et al, SOSP’97]
•  Left a number of security issues unsolved
•  Problem: ad-hoc approach to protection and resource management

–  Global thread name space ⇒ covert channels [Shapiro’03]
–  Threads as IPC targets ⇒ insufficient encapsulation
–  Single kernel memory pool ⇒ DoS attacks
–  Insufficient delegation of authority ⇒ limited flexibility,

performance
–  Unprinciple management of time

•  Addressed by seL4
–  Designed to support safety- and security-critical systems
–  Principled time management not yet mainline (RT branch)

COMP9242 S2/2016 W01

8 © 2016 Gernot Heiser. Distributed under CC Attribution License

seL4 Principles

•  Single protection mechanism: capabilities
–  Proper time management to be finished this year

•  All resource-management policy at user level
–  Painful to use
–  Need to provide standard memory-management library

o Results in L4-like programming model
•  Suitable for formal verification (proof of implementation correctness)

–  Attempted since ‘70s
–  Finally achieved by L4.verified project

at NICTA [Klein et al, SOSP’09]

COMP9242 S2/2016 W01

9 © 2016 Gernot Heiser. Distributed under CC Attribution License

seL4 Concepts

•  Capabilities (Caps)
–  mediate access

•  Kernel objects:
–  Threads (thread-control blocks: TCBs)
–  Address spaces (page table objects: PDs, PTs)
–  Endpoints (IPC EPs, Notification AEPs)
–  Capability spaces (CNodes)
–  Frames
–  Interrupt objects
–  Untyped memory

•  System calls
–  Send, Wait (and variants)
–  Yield

COMP9242 S2/2016 W01

Note: differences
between AOS and
mainline kernels!

10 © 2016 Gernot Heiser. Distributed under CC Attribution License

What are (Object) Capabilities?

•  OO API:
err = method(cap, args);

•  Used in some earlier microkernels:
–  KeyKOS [‘85], Mach [‘87], EROS [‘99]

Obj reference

Access rights

Cap = Access Token:
Prima-facie evidence
of privilege

Eg. read,
write, send,
execute…

Cap typically in kernel to
protect from forgery

Ø  user references cap
 through handle

Eg. thread,
file, …

Object

COMP9242 S2/2016 W01

11 © 2016 Gernot Heiser. Distributed under CC Attribution License

seL4 Capabilities
•  Stored in cap space (CSpace)

–  Kernel object made up of CNodes
–  each an array of cap “slots”

•  Inaccessible to userland
–  But referred to by pointers into CSpace (slot addresses)
–  These CSpace addresses are called CPTRs

•  Caps convey specific privilege (access rights)
–  Read, Write, Grant (cap transfer)

•  Main operations on caps:
–  Invoke: perform operation on object referred to by cap

o  Possible operations depend on object type
–  Copy/Mint/Grant: create copy of cap with same/lesser privilege
–  Move/Mutate: transfer to different address with same/lesser privilege
–  Delete: invalidate slot (cleans up object if this is the only cap to it)
–  Revoke: delete any derived (eg. copied or minted) caps

COMP9242 S2/2016 W01

Mainline has
Execute too

12 © 2016 Gernot Heiser. Distributed under CC Attribution License

Inter-Process Communication (IPC)

•  Fundamental microkernel operation
–  Kernel provides no services, only mechanisms
–  OS services provided by (protected) user-level server processes
–  invoked by IPC

•  seL4 IPC uses a handshake through endpoints:
–  Transfer points without storage capacity
–  Message must be transferred instantly

o  Single-copy user ➞ user by kernel

seL4

Client Server

IPC

send receive

COMP9242 S2/2016 W01

13 © 2016 Gernot Heiser. Distributed under CC Attribution License

IPC: (Synchronous) Endpoints

•  Threads must rendez-vous for message transfer
–  One side blocks until the other is ready
–  Implicit synchronisation

•  Message copied from sender’s to receiver’s message registers
–  Message is combination of caps and data words

o  Presently max 121 words (484B, incl message “tag”)
o  Should never use anywhere near that much!

 …....

Thread1
Running Blocked

Thread2
Blocked Running

Send (ep1_cap, …)

….. Wait (ep1_cap, …)

 Send (ep2_cap, …)

 …....

Wait (ep2_cap, …)

 …....

COMP9242 S2/2016 W01

14 © 2016 Gernot Heiser. Distributed under CC Attribution License

Kernel

IPC Endpoints are Message Queues

•  EP has no sense of direction
•  May queue senders or receivers

–  never both at the same time!
•  Communication needs 2 EPs!

Server

First invocation
queues caller

Client1

Client2

TCB1 TCB2 EP

Further callers of
same direction
queue behind

COMP9242 S2/2016 W01

15 © 2016 Gernot Heiser. Distributed under CC Attribution License

Client-Server Communication

•  Asymmetric relationship:
–  Server widely accessible, clients not
–  How can server reply back to

client (distinguish between them)?

•  Client can pass (session) reply cap in first request
–  server needs to maintain session state
–  forces stateful server design

•  seL4 solution: Kernel provides single-use reply cap
–  only for Call operation (Send+Wait)
–  allows server to reply to client
–  cannot be copied/minted/re-used but can be moved
–  one-shot (automatically destroyed after first use)

COMP9242 S2/2016 W01

Client1
Server Client2

16 © 2016 Gernot Heiser. Distributed under CC Attribution License

Call RPC Semantics

Client

Call(ep,…)

process

COMP9242 S2/2016 W01

Server
Wait(ep,&rep)

process
Send(rep,…)

process

Client Server

Kernel

mint rep
deliver to server

deliver to client
destroy rep

17 © 2016 Gernot Heiser. Distributed under CC Attribution License

Identifying Clients

Stateful server serving multiple clients
•  Must respond to correct client

–  Ensured by reply cap

•  Must associate request
with correct state

•  Could use separate EP per client
–  endpoints are lightweight (16 B)
–  but requires mechanism to wait on a set of EPs (like select)

•  Instead, seL4 allows to individually mark (“badge”) caps to same EP
–  server provides individually badged caps to clients
–  server tags client state with badge (through Mint())
–  kernel delivers badge to receiver on invocation of badged caps

COMP9242 S2/2016 W01

Client1
Server

Client1
state

Client2 Client2
state

18 © 2016 Gernot Heiser. Distributed under CC Attribution License

IPC Mechanics: Virtual Registers

•  Like physical registers, virtual registers are thread state
–  context-switched by kernel
–  implemented as physical registers or thread-local memory

•  Message registers
–  contain message transferred in IPC
–  architecture-dependent subset mapped to physical registers

o 5 on ARM, 3 on x86
–  library interface hides details

o 1st transferred word is special, contains message tag
–  API MR[0] refers to next word (not the tag!)

•  Reply cap
–  overwritten by next receive!
–  can move to CSpace with cspace_save_reply_cap()

COMP9242 S2/2016 W01

19 © 2016 Gernot Heiser. Distributed under CC Attribution License

IPC Message Format

Note: Don’t need to deal with this explicitly for project

COMP9242 S2/2016 W01

Msg
Length

Caps

Caps
unwrapped Label

CSpace reference for receiving
caps (Receive only)

Caps (on Send)
Badges (on Receive) Message Tag

Meaning defined
by IPC protocol
(Kernel or user)

Raw data

Bitmap indicating
caps which had

badges extracted
Caps sent
or received

20 © 2016 Gernot Heiser. Distributed under CC Attribution License

Client-Server IPC Example

Server

COMP9242 S2/2016 W01

Client
seL4_MessageInfo_t tag = seL4_MessageInfo_new(0, 0, 0, 1);

seL4_SetTag(tag);

seL4_SetMR(0,1);

seL4_Call(server_c, tag);

Load into
tag register

Set message
register #0

seL4_Word addr = ut_alloc(seL4_EndpointBits);

err = cspace_ut_retype_addr(tcb_addr, seL4_EndpointObject,

 seL4_EndpointBits, cur_cspace, &ep_cap)

seL4_CPtr cap = cspace_mint_cap(dest, cur_cspace, ep_cap, seL4_all_rights,

 seL4_CapData_Badge_new(0xff));

…

seL4_Word badge;

seL4_MessageInfo_t msg = seL4_Wait(ep, &badge);

…

seL4_MessageInfo_t reply = seL4_MessageInfo_new(0, 0, 0, 0);

seL4_Reply(reply);

Allocate EP and retype

Cap is badged 0xff

Insert EP into
CSpace

Implicit use
of reply cap

21 © 2016 Gernot Heiser. Distributed under CC Attribution License

Server Saving Reply Cap

Server

COMP9242 S2/2016 W01

seL4_Word addr = ut_alloc(seL4_EndpointBits);

err = cspace_ut_retype_addr(tcb_addr, seL4_EndpointObject,

seL4_EndpointBits, cur_cspace, &ep_cap)

seL4_CPtr cap = cspace_mint_cap(dest, cur_cspace, ep_cap, seL4_all_rights,

 seL4_CapData_Badge_new(0xff));

 …

seL4_Word badge;

seL4_MessageInfo_t msg = seL4_Wait(ep, &badge);

seL4_CPtr slot = cspace_save_reply_cap(cur_cspace);

…

seL4_MessageInfo_t reply = seL4_MessageInfo_new(0, 0, 0, 0);

seL4_Send(slot, reply);

cspace_free_slot(slot);

Save reply cap
in CSpace

Explicit use
of reply cap

Reply cap no
longer valid

22 © 2016 Gernot Heiser. Distributed under CC Attribution License

IPC Operations Summary

•  Send (ep_cap, …), Wait (ep_cap, …)
–  blocking message passing
–  needs Write, Read permission, respectively

•  NBSend (ep_cap, …)
–  Polling send: silently discard message if receiver isn’t ready

•  Call (ep_cap, …)
–  equivalent to Send (ep_cap,…) + reply-cap + Wait (ep_cap,…)
–  Atomic: guarantees caller is ready to receive reply

•  Reply (…)
–  equivalent to Send (rep_cap, …)

•  ReplyWait (ep_cap, …)
–  equivalent to Reply (…) + Wait (ep_cap, …)
–  at present solely for efficiency of server operation

No failure notification where this reveals info on other entities!

COMP9242 S2/2016 W01

Need error
handling
protocol !

23 © 2016 Gernot Heiser. Distributed under CC Attribution License

Notifications: Asynchronous Endpoints

•  Logically, AEP is an array of binary semaphores
–  Multiple signalling, select-like wait
–  Not a message-passing IPC operation!

•  Implemented by
data word in AEP
–  Send OR-s sender’s

cap badge to data word
–  Receiver can poll or wait

o  waiting returns and
clears data word

o  polling just returns
data word

COMP9242 S2/2016 W01

 …....

Thread1
Running Blocked

Thread2
Blocked Running

 w = Poll (ep_cap, …)

 …... w = Wait (ep_cap,…)
 ….... Notify (aep_cap, …)

Notify (aep_cap, …)

24 © 2016 Gernot Heiser. Distributed under CC Attribution License

Receiving from EP and AEP

Server with synchronous and asynchronous interface
•  Example: file system

–  synchronous (RPC-style) client protocol
–  asynchronous notifications from driver

•  Could have separate threads waiting on endpoints
–  forces multi-threaded server, concurrency control

•  Alternative: allow single thread to wait on both EP types
–  AEP is bound to thread with BindAEP() syscall
–  thread waits on synchronous endpoint
–  Notification delivered as if caller had been waiting on AEP

COMP9242 S2/2016 W01

Server
Client Driver

25 © 2016 Gernot Heiser. Distributed under CC Attribution License

AOS vs Mainline Kernel Differences

•  “Synchronous” vs “asynchronous” endpoint terminology is confusing
•  seL4 really has only synchronous IPC, plus signal-like notifications
•  Fixed in recent mainline kernels

COMP9242 S2/2016 W01

AOS Kernel

•  Sync EP, sync message
•  AEP, async notification
•  Send/Receive/Call/Reply&Wait
•  NBSend (EP)
•  AEP: NBSend, Wait

Mainline

•  EP, message
•  Notification obj, notification
•  Send/Receive/Call/Reply&Wait
•  NBSend, Poll, NBReply&Wait
•  Signal, Poll, Wait

26 © 2016 Gernot Heiser. Distributed under CC Attribution License

Derived Capabilities

•  Badging is an example of capability derivation
•  The Mint operation creates a new, less powerful cap

–  Can add a badge
o  Mint (,) ➞

–  Can strip access rights
o  eg WR➞R/O

•  Granting transfers caps over an Endpoint
–  Delivers copy of sender’s cap(s) to receiver

o  reply caps are a special case of this
–  Sender needs Endpoint cap with Grant permission
–  Receiver needs Endpoint cap with Write permission

o  else Write permission is stripped from new cap
•  Retyping

–  Fundamental operation of seL4 memory management
–  Details later…

COMP9242 S2/2016 W01

Remember,
caps are kernel

objects!

27 © 2016 Gernot Heiser. Distributed under CC Attribution License

seL4 System Calls

•  Notionally, seL4 has 6 syscalls:
–  Yield(): invokes scheduler

o  only syscall which doesn’t require a cap!
–  Send(), Receive() and 3 variants/combinations thereof

o  Notify() is actually not a separate syscall but same as Send()
–  This is why I earlier said “approximately 3 syscalls” J

•  All other kernel operations are invoked by “messaging”
–  Invoking Call() on an object cap

o  Logically sending a message to the kernel
–  Each object has a set of kernel protocols

o  operations encoded in message tag
o  parameters passed in message words

–  Mostly hidden behind “syscall” wrappers

COMP9242 S2/2016 W01

Will change
soon

28 © 2016 Gernot Heiser. Distributed under CC Attribution License

seL4 Memory-Management Principles

•  Memory (and caps referring to it) is typed:
–  Untyped memory:

o  unused, free to Retype into something else
–  Frames:

o  (can be) mapped to address spaces, no kernel semantics
–  Rest: TCBs, address spaces, CNodes, EPs

o  used for specific kernel data structures
•  After startup, kernel never allocates memory!

–  All remaining memory made Untyped, handed to initial address space
•  Space for kernel objects must be explicitly provided to kernel

–  Ensures strong resource isolation
•  Extremely powerful tool for shooting oneself in the foot!

–  We hide much of this behind the cspace and ut allocation libraries

COMP9242 S2/2016 W01

29 © 2016 Gernot Heiser. Distributed under CC Attribution License

Capability Derivation

•  Copy, Mint, Mutate, Revoke are invoked on CNodes

Mint(, dest, src, rights,)

–  CNode cap must provide appropriate rights
•  Copy takes a cap for destination

–  Allows copying of caps between Cspaces
–  Alternative to granting via IPC (if you have privilege to access Cspace!)

COMP9242 S2/2016 W01

30 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cspace Operations

COMP9242 S2/2016 W01

extern seL4_CPtr cspace_copy_cap(cspace_t *dest, cspace_t *src,
 seL4_CPtr src_cap, seL4_CapRights rights);

extern seL4_CPtr cspace_mint_cap(cspace_t *dest, cspace_t *src,

 seL4_CPtr src_cap, seL4_CapRights rights,
 seL4_CapData badge);

extern seL4_CPtr cspace_move_cap(cspace_t *dest, cspace_t *src,

 seL4_CPtr src_cap);

extern cspace_err_t cspace_delete_cap(cspace_t *c, seL4_CPtr cap);

extern cspace_err_t cspace_revoke_cap(cspace_t *c, seL4_CPtr cap);

extern cspace_t * cspace_create(int levels); /* either 1 or 2 level */
extern cspace_err_t cspace_destroy(cspace_t *c);

31 © 2016 Gernot Heiser. Distributed under CC Attribution License

cspace and ut libraries

ut_alloc()
ut_free()
…

cspace_create()
cspace_destroy()

…

seL4 OS
Personality

System Calls

Library Calls

User-level

Wraps messy
Cspace tree &

slot management

Manages slab
of Untyped Extend for

own needs!

COMP9242 S2/2016 W01

32 © 2016 Gernot Heiser. Distributed under CC Attribution License

seL4 Memory Management Approach

COMP9242 S2/2016 W01

Global Resource Manager

RAM Kernel
Data

GRM
Data
GRM
Data

Resource Manager

RM
Data

Resource Manager

RM
Data

Addr
Space

Addr
Space

Addr
Space

Addr
Space

RM

RM
Data

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

33 © 2016 Gernot Heiser. Distributed under CC Attribution License

Memory Management Mechanics: Retype

COMP9242 S2/2016 W01

UT0

Retype (Untyped, 21)

UT1 UT2 F0 F3 F2 F1

Retype (Untyped, 21)

UT3 UT4

Retype (TCB, 2n)

 … …

Retype (CNode, 2m, 2n)

r,w r,w r,w r,w

Retype (Frame, 22)

… …
r

Mint (r)

Revoke()

Mainline and
AOS kernels
differ, both

more general

34 © 2016 Gernot Heiser. Distributed under CC Attribution License

seL4 Address Spaces (VSpaces)

•  Very thin wrapper around hardware page tables
–  Architecture-dependent
–  ARM and (32-bit) x86 are very similar

•  Page directories (PDs) map page tables,
page tables (PTs) map pages

•  A VSpace is represented
by a PD object:
–  Creating a PD (by Retype)

creates the VSpace
–  Deleting the PD deletes

the VSpace

COMP9242 S2/2015 W01

PageTable_Map(PD)

Page_Map(PT)

35 © 2016 Gernot Heiser. Distributed under CC Attribution License

Address Space Operations

COMP9242 S2/2016 W01

•  Each mapping has:
–  virtual_address, phys_address, address_space and frame_cap
–  address_space struct identifies the level 1 page_directory cap
–  you need to keep track of (frame_cap, PD_cap, v_adr, p_adr)!

seL4_Word frame_addr = ut_alloc(seL4_PageBits);

err = cspace_ut_retype_addr(frame_addr, seL4_ARM_Page,

seL4_ARM_PageBits, cur_cspace, &frame_cap);

map_page(frame_cap, pd_cap, 0xA0000000, seL4_AllRights,

seL4_ARM_Default_VMAttributes);

bzero((void *)0xA0000000, PAGESIZE);

seL4_ARM_Page_Unmap(frame_cap);

cspace_delete_cap(frame_cap)

ut_free(frame_addr, seL4_PageBits);

cap to level 1
page table

Poor API
choice!

36 © 2016 Gernot Heiser. Distributed under CC Attribution License

Multiple Frame Mappings: Shared Memory

COMP9242 S2/2016 W01

•  Each mapping requires its own frame cap even for the same frame

seL4_CPtr new_frame_cap = cspace_copy_cap(cur_cspace, cur_cspace,

existing_frame_cap,

seL4_AllRights);

map_page(new_frame_cap, pd_cap, 0xA0000000, seL4_AllRights,

 seL4_ARM_Default_VMAttributes);

bzero((void *)0xA0000000, PAGESIZE);

seL4_ARM_Page_Unmap(existing_frame_cap);

cspace_delete_cap(existing_frame_cap)
seL4_ARM_Page_Unmap(new_frame_cap);

cspace_delete_cap(new_frame_cap)

ut_free(frame_addr, seL4_PageBits);

37 © 2016 Gernot Heiser. Distributed under CC Attribution License

Memory Management Caveats

•  The object manager handles allocation for you
•  Very simple buddy-allocator, you need to understand how it works:

–  Freeing an object of size n: you can allocate new objects <= size n
–  Freeing 2 objects of size n does not mean that you can allocate an

object of size 2n.

COMP9242 S2/2016 W01

Object Size (B), ARM Alignment (B), ARM

Frame 212 212
Page directory 214 214
Endpoint 24 24

Cslot 24 24

Cnode 214 214
TCB 29 29
Page table 210 210

Implementation
choice!

38 © 2016 Gernot Heiser. Distributed under CC Attribution License

Untyped Memory 215 B

But debugging
nightmare if

you try!!

•  Be careful with allocations!
•  Don’t try to allocate all of physical

memory as frames, you need more
memory for TCBs, endpoints etc.

•  Your frametable will eventually
integrate with ut_alloc to manage
the 4KiB untyped size.

Memory-Management Caveats

•  Objects are allocated by Retype() of Untyped memory
•  The kernel will not allow you to overlap objects
•  ut_alloc and ut_free() manage user-level’s view of

Untyped allocation.
–  Major pain if kernel and user’s view diverge
–  TIP: Keep objects address and CPtr together.

COMP9242 S2/2016 W01

8 frames

39 © 2016 Gernot Heiser. Distributed under CC Attribution License

Threads

•  Theads are represented by TCB objects
•  They have a number of attributes (recorded in TCB):

–  VSpace: a virtual address space
o  page directory reference
o  multiple threads can belong to the same VSpace

–  CSpace: capability storage
o  CNode reference (CSpace root) plus a few other bits

–  Fault endpoint
o  Kernel sends message to this EP if the thread throws an exception

–  IPC buffer (backing storage for virtual registers)
–  stack pointer (SP), instruction pointer (IP), user-level registers
–  Scheduling priority
–  Time slice length (presently a system-wide constant)

•  These must be explicitly managed
–  … we provide an example you can modify

COMP9242 S2/2016 W01

Yes, this is broken!
Fixed in later

kernels

40 © 2016 Gernot Heiser. Distributed under CC Attribution License

Threads

Creating a thread
•  Obtain a TCB object
•  Set attributes: Configure()

–  associate with VSpace, CSpace, fault EP, prio, define IPC buffer
•  Set SP, IP (and optionally other registers): WriteRegisters()

–  this results in a completely initialised thread
–  will be able to run if resume_target is set in call, else still inactive

•  Activated (made schedulable): Resume()

COMP9242 S2/2016 W01

41 © 2016 Gernot Heiser. Distributed under CC Attribution License

Creating a Thread in Own AS and Cspace

COMP9242 S2/2016 W01

static char stack[100];

int thread_fct() {

while(1);

return 0;

}

/* Allocate and map new frame for IPC buffer as before */

seL4_Word tcb_addr = ut_alloc(seL4_TCBBits);

err = cspace_ut_retype_addr(tcb_addr, seL4_TCBObject, seL4_TCBBits,

 cur_cspace, &tcb_cap)

err = seL4_TCB_Configure(tcb_cap, FAULT_EP_CAP, PRIORITY,

 curspace->root_cnode, seL4NilData,

 seL4_CapInitThreadPD, seL4_NilData,

 PROCESS_IPC_BUFFER, ipc_buffer_cap);

seL4_UserContext context = { .pc = &thread, .sp = &stack};

seL4_TCB_WriteRegisters(tcb_cap, 1, 0, 2, &context);

If you use threads, write a library to create and destroy them.

42 © 2016 Gernot Heiser. Distributed under CC Attribution License

Threads and Stacks

•  Stacks are completely user-managed, kernel doesn’t care!
–  Kernel only preserves SP, IP on context switch

•  Stack location, allocation, size must be managed by userland
•  Beware of stack overflow!

–  Easy to grow stack into other data
o  Pain to debug!

–  Take special care with automatic arrays!

COMP9242 S2/2016 W01

Stack 1 Stack 2

f () {

 int buf[10000];

 . . .

}

43 © 2016 Gernot Heiser. Distributed under CC Attribution License

Creating a Thread in New AS and CSpace

COMP9242 S2/2016 W01

/* Allocate, retype and map new frame for IPC buffer as before

 * Allocate and map stack???

 * Allocate and retype a TCB as before

 * Allocate and retype a seL4_ARM_PageDirectoryObject of size seL4_PageDirBits

 * Mint a new badged cap to the syscall endpoint

 */

cspace_t * new_cpace = ut_alloc(seL4_TCBBits);

char *elf_base = cpio_get_file(_cpio_archive, “test”)->p_base;

err = elf_load(new_pagedirectory_cap, elf_base);

unsigned int entry = elf_getEntryPoint(elf_base);

err = seL4_TCB_Configure(tcb_cap, FAULT_EP_CAP, PRIORITY,

 new_cspace->root_cnode, seL4NilData,

 new_pagedirectory_cap, seL4_NilData,

 PROCESS_IPC_BUFFER, ipc_buffer_cap);

seL4_UserContext context = {.pc = entry, .sp = &stack};

seL4_TCB_WriteRegisters(tcb_cap, 1, 0, 2, &context);

44 © 2016 Gernot Heiser. Distributed under CC Attribution License

seL4 Scheduling

•  Present seL4 scheduling model is fairly naïve
•  256 hard priorities (0–255)

–  Priorities are strictly observed
–  The scheduler will always pick the highest-prio runnable thread
–  Round-robin scheduling within prio level

•  Aim is real-time performance, not fairness
–  Kernel itself will never change the prio of a thread
–  Achieving fairness (if desired) is the job of user-level servers

COMP9242 S2/2016 W01

prio 0 255

Better model in
“RT” branch –
merge soon

45 © 2016 Gernot Heiser. Distributed under CC Attribution License

Exception Handling

•  A thread can trigger different kinds of exceptions:
–  invalid syscall

o  may require instruction emulation or result from virtualization
–  capability fault

o  cap lookup failed or operation is invalid on cap
–  page fault

o  attempt to access unmapped memory
o  may have to grow stack, grow heap, load dynamic library, …

–  architecture-defined exception
o  divide by zero, unaligned access, …

•  Results in kernel sending message to fault endpoint
–  exception protocol defines state info that is sent in message

•  Replying to this message restarts the thread
–  endless loop if you don’t remove the cause for the fault first!

COMP9242 S2/2016 W01

46 © 2016 Gernot Heiser. Distributed under CC Attribution License

Interrupt Handling

COMP9242 S2/2016 W01

Interrupt
handler
(driver)

IRQ triggered.
Kernel fakes

notification on AEP

Handler performs
appropriate action.

Handler waits
on AEP Kernel ACKs IRQ

47 © 2016 Gernot Heiser. Distributed under CC Attribution License

Interrupt Management

•  seL4 models IRQs as messages sent to an AEP
–  Interrupt handler has Receive cap on that AEP

•  2 special objects used for managing and acknowledging interrupts:
–  Single IRQControl object

o  single IRQControl cap provided by kernel to initial VSpace
o  only purpose is to create IRQHandler caps

–  Per-IRQ-source IRQHandler object
o  interrupt association and dissociation
o  interrupt acknowledgment

COMP9242 S2/2015 W01

IRQControl
Get(usb)

IRQHandler

48 © 2016 Gernot Heiser. Distributed under CC Attribution License

Interrupt Handling

•  IRQHandler cap allows driver to bind AEP to interrupt
•  Afterwards:

–  AEP is used to receive interrupt
–  IRQHandler is used to acknowledge interrupt

COMP9242 S2/2016 W01

SetEndpoint(aep)

IRQHandler

Wait(aep)

Ack(handler)

seL4_IRQHandler interrupt = cspace_irq_control_get_cap(cur_cspace,

seL4_CapIRQControl, irq_number);

seL4_IRQHandler_SetEndpoint(interrupt, async_ep_cap);

seL4_IRQHander_ack(interrupt);

ACK first to
unmask IRQ

49 © 2016 Gernot Heiser. Distributed under CC Attribution License

Device Drivers

•  In seL4 (and all other L4 kernels) drivers are usermode processes
•  Drivers do three things:

–  Handle interrupts (already explained)
–  Communicate with rest of OS (IPC + shared memory)
–  Access device registers

•  Device register access
–  Devices are memory-mapped on ARM
–  Have to find frame cap from bootinfo structure
–  Map the appropriate page in the driver’s VSpace

COMP9242 S2/2016 W01

device_vaddr = map_device(0xA0000000, (1 << seL4_PageBits));

…

*((void *) device_vaddr= …;

Magic device
register access

50 © 2016 Gernot Heiser. Distributed under CC Attribution License

Project Platform: i.MX6 Sabre Lite

ARMv7
Cortex A9

CPU

1 GiB
Memory

Serial Port

Ethernet

seL4_DebugPutChar()

M0 – serial over LAN
for userlevel apps

M6 – Network File
System (NFS)

Timer &
other

devices

COMP9242 S2/2016 W01

51 © 2016 Gernot Heiser. Distributed under CC Attribution License

in the Real World (Courtesy Boeing, DARPA)

COMP9242 S2/2016 W01

