
COMP9242
Advanced Operating Systems

S2/2014 Week 10:
Multiprocessor OS

COMP9242 S2/2014 W10

2

Overview

•  Multiprocessor OS
–  Scalability (Review)

•  Multiprocessor Hardware
–  Contemporary systems
–  Experimental and Future systems

•  OS design for Multiprocessors
–  Guidelines
–  Design approaches

•  Divide and Conquer
•  Reduce Sharing
•  No Sharing

COMP9242 S2/2014 W10

3

MULTIPROCESSOR OS

COMP9242 S2/2014 W10

4

Uniprocessor OS

COMP9242 S2/2014 W10

CPU

App1

OS

Memory

OS data Application data

App1

App2 App3

App4

App2

Run
queue

FS
structs

Process control
blocks

5

Multiprocessor OS

COMP9242 S2/2014 W10

CPU

App1

OS

CPU

App3

OS

CPU

App4

OS

CPU

App4

OS

Memory

OS data Application data

App1

App2 App3

App4
Run

queue
FS

structs
Process control

blocks

6

Multiprocessor OS

COMP9242 S2/2014 W10

CPU

App1

OS

CPU

App3

OS

CPU

App4

OS

CPU

App4

OS

Memory

OS data Application data

App1

App2 App3

App4
Run

queue
FS

structs
Process control

blocks

•  Key design challenges:
–  Correctness of (shared)

data structures
–  Scalability

7

Correctness of Shared Data

•  Concurrency control
–  Locks
–  Semaphores
–  Transactions
–  Lock-free data structures

•  We know how to do this:
–  In the application
–  In the OS

COMP9242 S2/2014 W10

8

Scalability

Speedup as more processors added

COMP9242 S2/2014 W10

sp
ee

du
p

number of processors

Ideal

9

Scalability

Speedup as more processors added

COMP9242 S2/2014 W10

sp
ee

du
p

number of processors

Reality

10

Scalability and Serialisation

Remember Amdahl’s law
–  Serial (non-parallel) portion: when application not running on all cores
–  Serialisation prevents scalability

COMP9242 S2/2014 W10 From http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg

€

S(N) =
1

(1− P) +
P
N

11

Serialisation

COMP9242 S2/2014 W10

Where does serialisation show up?
•  Application (e.g. access shared app data)
•  OS (e.g. performing syscall for app) How much time is spent in OS?
Sources of Serialisation:
•  Locking (explicit serialisation)

–  Waiting for a lock  stalls self
–  Lock implementation:

•  Atomic operations lock bus  stalls everyone
•  Cache coherence traffic loads bus  slows down others

•  Memory access (implicit)
–  Relatively high latency to memory  stalls self

•  Cache (implicit)
–  Processor stalled while cache line is fetched or invalidated
–  Affected by latency of interconnect
–  Performance depends on data size (cache lines) and contention

(number of cores)

12

More Cache-related Serialisation

•  False sharing
–  Unrelated data structs share the same cache line
–  Accessed from different processors
 Cache coherence traffic and delay

•  Cache line bouncing
–  Shared R/W on many processors
–  E.g: bouncing due to locks: each processor spinning on a lock brings it

into its own cache
 Cache coherence traffic and delay

•  Cache misses
–  Potentially direct memory access  stalls self
–  When does cache miss occur?

•  Application runs on new core
•  Cached memory has been evicted

COMP9242 S2/2014 W10

13

MULTIPROCESSOR HARDWARE

COMP9242 S2/2014 W10

14

Multi-What?

•  Multiprocessor, SMP
–  >1 separate processors, connected by off chip bus

•  Multicore
–  >1 processing cores in a single processor, connected by on chip bus

•  Multithread, SMT
–  >1 hardware threads in a single core

•  Multicore + Multiprocessor
–  >1 multicore processors
–  >1 multicore dies in a package

COMP9242 S2/2014 W10

15

Interesting Properties of Multiprocessors

•  Structure
–  How many cores and processors are there
–  What kinds of cores and processors are there
–  How are they organised

•  Interconnect
–  How are the cores and processors connected

•  Memory Locality and Caches
–  Where is the memory
–  What is the cache architecture

•  Interprocessor Communication
–  How do cores and processors send messages to each other

COMP9242 S2/2014 W10

16

Contemporary Multiprocessor Hardware

•  Intel:
–  Nehalem, Westmere: 10 core, QPI
–  Sandy Bridge, Ivy Bridge:

•  5ore, ring bus, integrated GPU, L3, IO
–  Haswell (Broadwell):

•  18 core, ring bus, transactional memory, slices (EP)
•  AMD:

–  K10 (Opteron: Barcelona, Magny Cours)
•  12 core, Hypertransport

–  Bulldozer, Piledriver, Steamroller (Opteron, FX)
•  16 core, Clustered Multithread: module with 2 integer cores

•  Oracle (Sun) UltraSparc T1,T2,T3,T4,T5 (Niagara)
–  16 cores, 8 threads/core (2 simultaneous), crossbar, 8 sockets

•  ARM Cortex A9, A15 MPCore, big.LITTLE
–  4 -8 cores, big.LITTLE: A7 + A15

COMP9242 S2/2014 W10

17

Scale and Structure

•  ARM Cortex A9 MPCore

COMP9242 S2/2014 W10
From http://www.arm.com/images/Cortex-A9-MP-core_Big.gif

18

Scale and Structure

•  ARM big.LITTLE

COMP9242 S2/2014 W10

From http://www.arm.com/images/Fig_1_Cortex-A15_CCI_Cortex-A7_System.jpg

19

Scale and Structure

•  Intel Nehalem

COMP9242 S2/2014 W10

From www.dawnofthered.net/wp-content/uploads/2011/02/Nehalem-EX-architecture-detailed.jpg

20

Interconnect

•  AMD Barcelona

COMP9242 S2/2014 W10

From www.sigops.org/sosp/sosp09/slides/baumann-slides-sosp09.pdf

21

Memory Locality and Caches

COMP9242 S2/2014 W10

From www.systems.ethz.ch/education/past-courses/fall-2010/aos/lectures/wk10-multicore.pdf

22

Interprocessor Communication

COMP9242 S2/2014 W10

UltraSPARC® IIIi
processor

1x

2004 2005 2006 2007 2008

UltraSPARC® T1
processor
32 threads
eight cores

14x

UltraSPARC T2
processor
64 threads
eight cores

35x

“Victoria Falls”
128 threads

16 cores
65x

(two sockets)

FB DIMM FB DIMM FB DIMM FB DIMM

SPU SPU SPU SPU SPU SPU SPU SPU

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <95 W x8 @ 2.0 GHz

NIU
(Ethernet+)

Sys I/F
Buffer Switch Core PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

FB DIMM FB DIMM FB DIMM FB DIMM

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <100 W x8 @2. GHz

NIU
(E-NET+)

Sys I/F
Buffer Switch Core

PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

From Sun/Oracle

•  Oracle Sparc T2

23

Interprocessor Communication

COMP9242 S2/2014 W10

From http://www.anandtech.com/show/8423/intel-xeon-e5-version-3-up-to-18-haswell-ep-cores-/4

24

Interprocessor Communication/Structure/Memory

COMP9242 S2/2014 W10

From http://www.anandtech.com/show/8423/intel-xeon-e5-version-3-up-to-18-haswell-ep-cores-/4

25

Experimental/Future Multiprocessor Hardware

•  Microsoft Beehive
–  Ring bus, no cache coherence

•  Tilera Tile64, Tile-Gx
–  100 cores, mesh network

•  Intel Polaris
–  80 cores, mesh network

•  Intel SCC
–  48 cores, mesh network, no cache coherency

•  Intel MIC (Multi Integrated Core) (Knight’s Corner - Xeon Phi)
–  60+ cores, ring bus

COMP9242 S2/2014 W10

26

Scale and Structure

•  Tilera Tile64, Intel Polaris

COMP9242 S2/2014 W10

PCIe 1

MAC/
PHY

SerDes

GbE

GbE 1 Flexible
I/O

Flexible
I/O

UART,
HPI, I2C,
JTAG,SPI

DDR2 Controller 3 DDR2 Controller 2

DDR2 Controller 1 DDR2 Controller 0

XAUI 1
MAC/
PHY

SerDes

PCIe 0
MAC/
PHY

SerDes

SerDes

0

Reg File

P
2

P
1

P
0

L2 CACHE

PROCESSOR CACHE

SWITCH

2D DMA

L-1I

MDN TDN

UDN IDN

STN

L-1D

I-TLB D-TLB

From www.tilera.com/products/processors/TILE64

27

Cache and Memory

•  Intel SCC

COMP9242 S2/2014 W10

From techresearch.intel.com/spaw2/uploads/files/SCC_Platform_Overview.pdf

28

Interprocessor Communication

•  Beehive

COMP9242 S2/2014 W10

From projects.csail.mit.edu/beehive/BeehiveV5.pdf

29

•  Intel MIC

Interprocess Communication

COMP9242 S2/2014 W10
From http://semiaccurate.com/2012/08/28/intel-details-knights-corner-architecture-at-long-last/

30

Summary

•  Scalability
–  100+ cores
–  Amdahl’s law really kicks in

•  Heterogeneity
–  Heterogeneous cores, memory, etc.
–  Properties of similar systems may vary wildly (e.g. interconnect topology

and latencies between different AMD platforms)
•  NUMA

–  Also variable latencies due to topology and cache coherence
•  Cache coherence may not be possible

–  Can’t use it for locking
–  Shared data structures require explicit work

•  Computer is a distributed system
–  Message passing
–  Consistency and Synchronisation
–  Fault tolerance

COMP9242 S2/2014 W10

31

OS DESIGN FOR MULTIPROCESSORS

COMP9242 S2/2014 W10

32

Optimisation for Scalability

•  Reduce amount of code in critical sections
–  Increases concurrency
–  Fine grained locking

•  Lock data not code
•  Tradeoff: more concurrency but more locking (and locking causes

serialisation)
–  Lock free data structures

•  Avoid expensive memory access
–  Avoid uncached memory
–  Access cheap (close) memory

COMP9242 S2/2014 W10

33

Optimisation for Scalability

COMP9242 S2/2014 W10

•  Reduce false sharing
–  Pad data structures to cache lines

•  Reduce cache line bouncing
–  Reduce sharing
–  E.g: MCS locks use local data

•  Reduce cache misses
–  Affinity scheduling: run process on the core where it last ran.
–  Avoid cache pollution

34

OS Design Guidelines for Modern (and future)
Multiprocessors
•  Avoid shared data

–  Performance issues arise less from lock contention than from data
locality

•  Explicit communication
–  Regain control over communication costs
–  Sometimes it’s the only option

•  Tradeoff: parallelism vs synchronisation
–  Synchronisation introduces serialisation
–  Make concurrent threads independent

•  Allocate for locality
–  E.g. provide memory local to a core

•  Schedule for locality
–  With cached data
–  With local memory

•  Tradeoff: uniprocessor performance vs scalability

COMP9242 S2/2014 W10

35

Design approaches

•  Divide and conquer
–  Divide multiprocessor into smaller bits, use them as normal
–  Using virtualisation
–  Using exokernel

•  Reduced sharing
–  Brute force & Heroic Effort

•  Find problems in existing OS and fix them
•  E.g Linux rearchitecting: BKL -> fine grained locking

–  By design
•  Avoid shared data as much as possible

•  No sharing
–  Computer is a distributed system

•  Do extra work to share!

COMP9242 S2/2014 W10

36

Divide and Conquer

Disco
–  Scalability is too hard!

•  Context:
–  ca. 1995, large ccNUMA multiprocessors appearing
–  Scaling OSes requires extensive modifications

•  Idea:
–  Implement a scalable VMM
–  Run multiple OS instances

•  VMM has most of the features of a scalable OS:
–  NUMA aware allocator
–  Page replication, remapping, etc.

•  VMM substantially simpler/cheaper to implement
•  Modern incarnations of this

–  Virtual servers (Amazon, etc.)
–  Research (Cerberus)

COMP9242 S2/2014 W10

Running commodity OSes on scalable multiprocessors [Bugnion et al., 1997]
http://www-flash.stanford.edu/Disco/

37

Disco Architecture

COMP9242 S2/2014 W10

38

Disco Performance

COMP9242 S2/2014 W10

39

Space-Time Partitioning

Tessellation
–  Space-Time partitioning
–  2-level scheduling

•  Context:
–  2009-… highly parallel multicore systems
–  Berkeley Par Lab

COMP9242 S2/2014 W10

Tessellation: Space-Time Partitioning in a Manycore Client OS [Liu et al., 2010]
http://tessellation.cs.berkeley.edu/

40

Tessellation

COMP9242 S2/2014 W10

41

Reduce Sharing

K42
•  Context:

–  1997-2006: OS for ccNUMA systems
–  IBM, U Toronto (Tornado, Hurricane)

•  Goals:
–  High locality
–  Scalability

•  Object Oriented
–  Fine grained objects

•  Clustered (Distributed) Objects
–  Data locality

•  Deferred deletion (RCU)
–  Avoid locking

•  NUMA aware memory allocator
–  Memory locality

COMP9242 S2/2014 W10

Clustered Objects, Ph.D. thesis [Appavoo, 2005]
http://www.research.ibm.com/K42/

42

K42: Fine-grained objects

COMP9242 S2/2014 W10

43

K42: Clustered objects

•  Globally valid object
reference

•  Resolves to
–  Processor local

representative
•  Sharing, locking strategy

local to each object
•  Transparency

–  Eases complexity
–  Controlled introduction of

locality
•  Shared counter:

–  inc, dec: local access
–  val: communication

•  Fast path:
–  Access mostly local

structures
COMP9242 S2/2014 W10

44

K42 Performance

COMP9242 S2/2014 W10

2.4.19

45

Corey

•  Context
–  2008, high-end multicore servers, MIT

•  Goals:
–  Application control of OS sharing

•  OS
–  Exokernel-like, higher-level services as libraries
–  By default only single core access to OS data structures
–  Calls to control how data structures are shared

•  Address Ranges
–  Control private per core and shared address spaces

•  Kernel Cores
–  Dedicate cores to run specific kernel functions

•  Shares
–  Lookup tables for kernel objects allow control over which object

identifiers are visible to other cores.

COMP9242 S2/2014 W10

Corey: An Operating System for Many Cores [Boyd-Wickizer et al., 2008]
http://pdos.csail.mit.edu/corey

46

Linux Brute Force Scalability

•  Context
–  2010, high-end multicore servers, MIT

•  Goals:
–  Scaling commodity OS

•  Linux scalability (2010 – scale Linux to 48 cores)

COMP9242 S2/2014 W10

An Analysis of Linux Scalability to Many Cores [Boyd-Wickizer et al., 2010]

47

•  Apply lessons from parallel computing and past research
–  sloppy counters,
–  per-core data structs,
–  fine-grained lock, lock free,
–  cache lines
–  3002 lines of code changed

•  Conclusion:
–  no scalability reason to give up on traditional operating system

organizations just yet.

Linux Brute Force Scalability

COMP9242 S2/2014 W10

48

Scalability of the API

•  Context
–  2013, previous multicore projects at MIT

•  Goals
–  How to know if a system is really scalable?

•  Workload-based evaluation
–  Run workload, plot scalability, fix problems
–  Did we miss any non-scalable workload?
–  Did we find all bottlenecks?

•  Is there something fundamental that makes an system non-
scalable?
–  The interface might be a fundamental bottleneck

COMP9242 S2/2014 W10

The Scalable Commutativity Rule: Designing Scalable Software for Multicore Processors[Clements et al., 2013]

49

Scalable Commutativity Rule

•  The Rule
–  Whenever interface operations commute, they can be implemented in a

way that scales.
•  Commutative operations:

–  Cannot distinguish order of operations from results
–  Example:

•  Creat:
–  Requires that lowest available FD be returned
–  Not commutative: can tell which one was run first

•  Why are commutative operations scalable?
–  results independent of order ⇒ communication is unnecessary
–  without communication, no conflicts

•  Informs software design process
–  Design: design guideline for scalable interfaces
–  Implementation: clear target
–  Test: workload-independent testing

COMP9242 S2/2014 W10

50

Commuter: An Automated Scalability Testing Tool

COMP9242 S2/2014 W10

(sv6)

51

FlexSC

•  Context:
–  2010, commodity multicores
–  U Toronto

•  Goal:
–  Reduce context switch

overhead of system calls
•  Syscall context switch:

–  Usual mode switch overhead
–  But: cache and TLB pollution!

COMP9242 S2/2014 W10

FlexSC: Flexible System Call Scheduling with Exception-Less System Calls
[Soares and Stumm., 2010]

52

FlexSC

•  Asynchronous system calls
–  Batch system calls
–  Run them on dedicated cores

•  FlexSC-Threads
–  M on N
–  M >> N

COMP9242 S2/2014 W10

53

FlexSC Results

COMP9242 S2/2014 W10

Apache
FlexSC: batching,
sys call core redirect

54

No sharing

•  Multikernel
–  Barrelfish
–  fos: factored operating system

COMP9242 S2/2014 W10

The Multikernel: A new OS architecture for scalable multicore systems [Baumann et al., 2009]
http://www.barrelfish.org/

55

Barrelfish

•  Context:
–  2007 large multicore machines appearing
–  100s of cores on the horizon
–  NUMA (cc and non-cc)
–  ETH Zurich and Microsoft

•  Goals:
–  Scale to many cores
–  Support and manage heterogeneous hardware

•  Approach:
–  Structure OS as distributed system

•  Design principles:
–  Interprocessor communication is explicit
–  OS structure hardware neutral
–  State is replicated

•  Microkernel
–  Similar to seL4: capabilities

COMP9242 S2/2014 W10

The Multikernel: A new OS architecture for scalable multicore systems
[Baumann et al., 2009] http://www.barrelfish.org/

56

Barrelfish

COMP9242 S2/2014 W10

57

Barrelfish: Replication

•  Kernel + Monitor:
–  Only memory shared for message channels

•  Monitor:
–  Collectively coordinate system-wide state

•  System-wide state:
–  Memory allocation tables
–  Address space mappings
–  Capability lists

•  What state is replicated in Barrelfish
–  Capability lists

•  Consistency and Coordination
–  Retype: two-phase commit to globally execute operation in order
–  Page (re/un)mapping: one-phase commit to synchronise TLBs

COMP9242 S2/2014 W10

58

Barrelfish: Communication

•  Different mechanisms:
–  Intra-core

•  Kernel endpoints
–  Inter-core

•  URPC
•  URPC

–  Uses cache coherence + polling
–  Shared bufffer

•  Sender writes a cache line
•  Receiver polls on cache line
•  (last word so no part message)

–  Polling?
•  Cache only changes when sender

writes, so poll is cheap
•  Switch to block and IPI if wait is

too long.

COMP9242 S2/2014 W10

59

Barrelfish: Results

•  Message passing vs caching

COMP9242 S2/2014 W10

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

La
te

n
cy

 (c
yc

le
s
×

10
0

0
)

Cores

SHM8
SHM4
SHM2
SHM1
MSG8
MSG1

Server

60

Barrelfish: Results

•  Broadcast vs Multicast

COMP9242 S2/2014 W10

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

La
te

n
cy

 (c
yc

le
s
×

10
0

0
)

Cores

Broadcast
Unicast

Multicast
NUMA-Aware Multicast

61

Barrelfish: Results

•  TLB shootdown

COMP9242 S2/2014 W10

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

La
te

n
cy

 (c
yc

le
s

×
 1

0
0

0
)

Cores

Windows
Linux

Barrelfish

62

SUMMARY

COMP9242 S2/2014 W10

63

Summary

•  Trends in multicore
–  Scale (100+ cores)
–  NUMA
–  No cache coherence
–  Distributed system
–  Heterogeneity

•  OS design guidelines
–  Avoid shared data
–  Explicit communication
–  Locality

•  Approaches to multicore OS
–  Partition the machine (Disco, Tessellation)
–  Reduce sharing (K42, Corey, Linux, FlexSC)
–  No sharing (Barrelfish, fos)

COMP9242 S2/2014 W10

