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A LITTLE BIT OF HISTORY e

NICTA

e Basic concepts well established
— Process model
— File system model
— IPC
e Additions:
— Paged virtual memory (3BSD, 1979)
— TCP/IP Networking (BSD 4.1, 1983)
— Multiprocessing (Vendor Unices such as
Sequent’s ‘Balance’, 1984)
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PROCESS MODEL e

NICTA

e Root process (init)

e fork () creates (almost) exact copy

— Much is shared with parent — Copy-On-Write
avoids overmuch copying

e cxec () overwrites memory image from a file

e Allows a process to control what is shared



FORK () AND EXEC () (Yo

NICTA
=» A process can clone itself by calling fork ().

=» Most attributes copied:
-=» Address space (actually shared, marked copy-on-write)
=» current directory, current root
=» File descriptors
=» permissions, etc.
-» Some attributes shared:
=*» Memory segments marked MAP_SHARED
=» Open files
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FORK () AND ExXEC ()

TN OO O A WO D = O

Files and Processes:

File descriptor table

Process A
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Open file descriptor
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NICTA



FORK () AND ExXEC () (1@

switch (kidpid = fork()) ({ IR

case 0: /% child =/
close (0); close(l); close(2);
dup (1nfd); dup(outfd); dup (outfd),;
execve ("path/to/prog", argv, envp);
_exX1t (EXIT_FATILURE) ;
case —1:
/* handle error =*/
default:
waltpid(kidpid, &status, 0);



STANDARD FILE DESCRIPTORS e

NICTA
0 Standard Input
1 Standard Output
2 Standard Error

=*» Inherited from parent
=» On login, all are set to controlling tty



FILE MODEL e

e Separation of names from content. NICTA

e ‘regular’ files ‘just bytes’ — structure/meaning
supplied by userspace

e Devices represented by files.

e Directories map names to index node indices

(inums)

e Simple permissions model



FILE MODEL

Inode 324

Y

V/ 2
bin 324 \
boot 3
dev 4
var )
vmlinux | 125
etc 6
usr I
sbin 8

324

2
bash 300
sh 300
s 301
which 367
rnano 368
busybox | 402
setserial | 401
bzcmp 265

NICTA
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=» abstracted per filesystem in VFS layer

=» Can be slow: extensive use of caches to speed it up
dentry cache

=» hide filesystem and device boundaries
=» walks pathname, translating symbolic links



NAME] e

NICTA
=» translate name — inode

=» abstracted per filesystem in VFS layer

=» Can be slow: extensive use of caches to speed it up
dentry cache — becomes SMP bottleneck

=» hide filesystem and device boundaries
=» walks pathname, translating symbolic links
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KISS:
-» Simplest possible algorithm used at first

NICTA
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EVOLUTION e
NICTA

KISS:

=» Simplest possible algorithm used at first
=» Easy to show correctness

-=» Fast to implement
=» As drawbacks and bottlenecks are found, replace with
faster/more scalable alternatives



C DIALECT (Yo

e Extra keywords: NICTA

— Section IDs: __init, __exit, __percpu etc

— Info Taint annotation _user, __rcu, _kernel,

__lomem

— Locking annotations __acquires (X),

__releases (X)

— extra typechecking (endian portability) - bitwise



C DIALECT o

e Extra iterators NICTA

— lype_name_foreach ()

e Extra accessors

— container_of ()



C DIALECT (Yo

e Massive use of inline functions NICTA

e Some use of CPP macros

o Little #ifdef use in code: rely on optimizer to elide
dead code.



SCHEDULING e

Goals: NICTA

e O(1) in number of runnable processes, number of
Processors
— good uniprocessor performance

o ‘fair

e (Good interactive response

e topology-aware



SCHEDULING

Implementation:
e Changes from time to time.

e Currently ‘CFS’ by Ingo Molnar.

NICTA

18



SCHEDULING e

Dual Entitlement Scheduler NICTA
Running
“
Expired

1 e |
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1. Keep tasks ordered by effective CPU runtime
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SCHEDULING Yo

NICTA

1. Keep tasks ordered by effective CPU runtime
weighted by nice in red-black tree
2. Always run left-most task.

Devil’s in the detalls:

e Avoiding overflow

e Keeping recent history

e multiprocessor locality

¢ handling too-many threads
e Sleeping tasks

o (5roun hierarchy



SCHEDULING

(hyper)Thread

NICTA
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Core

NICTA
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SCHEDULING

Oe

NICTA

Packages

Cores

[hyper)Threads
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SCHEDULING
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NICTA
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SCHEDULING e
NICTA

Locality Issues:

e Best to reschedule on same processor (don't move
cache footprint, keep memory close)

— Otherwise schedule on a ‘nearby’ processor
e Try to keep whole sockets idle

e Somehow identify cooperating threads, co-schedule
on same package?



SCHEDULING e

e One queue per processor (or hyperthread) NICTA

e Processors in hierarchical ‘domains’
e Load balancing per-domain, bottom up

e Aims to keep whole domains idle if possible (power
savings)



MEMORY MANAGEMENT Oe

NICTA

Physical Virtual
Highmem
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Linux kernel 3G
Memory in
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MEMORY MANAGEMENT e

NICTA
e Direct mapped pages become logical addresses
— _pa () and __va () convert physical to virtual for
these

¢ small memory systems have all memory as logical

e More memory — A kernel refer to memory by

struct page



MEMORY MANAGEMENT (Yo

struct page. NICTA

e Every frame has a struct page (up to 10 words)

e [rack:
— flags
— backing address space
— offset within mapping or freelist pointer

— Reference counts

— Kernel virtual address (if mapped)



MEMORY MANAGEMENT

()@

< >
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File

(or swap)
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struct
address_space

J
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In virtual address order....
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Page Table
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NICTA

struct
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ow

struct task_struct




MEMORY MANAGEMENT (e
NICTA

Address Space:

e Misnamed: means collection of pages mapped from
the same object

e T[racks inode mapped from, radix tree of pages in
mapping

e Has ops (from file system or swap manager) to:
dirty mark a page as dirty
readpages populate frames from backing store

writepages Clean pages — make backing store the
same as in-memaory.copy



MEMORY MANAGEMENT (Yo

migratepage Move pages between NUMA nodds- "
Others... And other housekeeping



PAGE FAULT TIME Yo

e Special case in-kernel faults NICTA

e Find the VMA for the address
— segfault if not found (unmapped area)
e |f it's a stack, extend it.
e Otherwise:
1. Check permissions, SIG_.SEGV if bad
2. Call handle mm _fault ():
— walk page table to find entry (populate higher
levels if nec. until leaf found)
— call handle pte_fault ()



PAGE FAULT TIME e

handle pte_fault (): Depending on PTE status, an'”
e provide an anonymous page
e do copy-on-write processing
e reinstantiate PTE from page cache
e initiate a read from backing store.

and if necessary flushes the TLB.



DRIVER INTERFACE Yo

Three kinds of device: NICTA

1. Platform device
2. enumerable-bus device

3. Non-enumerable-bus device



DRIVER INTERFACE e

NICTA

Enumerable buses:

static DEFINE_PCI_DEVICE_TABLE (cp_pci_tbl) = {

{ PCI_DEVICE (PCI_VENDOR_ID_REALTEK,PCI_DEVICE_ID
{ PCI_DEVICE (PCI_VENDOR_ID_TTTECH,PCI_DEVICE_ID T
{ 1}

b i

MODULE_DEVICE_TABLE (pci, cp_pci_tbl);

33



DRIVER INTERFACE e
NICTA

Driver interface:
init called to register driver
exit called to deregister driver, at module unload time

probe () called when bus-id matches; returns 0 if driver
claims device

open, close, etc as necessary for driver class



DRIVER INTERFACE e

Platform Devices: NICTA

static struct platform _device nsluZ_uart = {
.name = "seri1al8250",

.1d = PLAT8250_DEV_PLATFORYM,
.dev.platform_data = nsluZ2_uart_data,
.num_resources = 2,

.resource = nsluZ_uart resources,

b s

35



DRIVER INTERFACE

non-enumerable buses: Treat like platform devices

(o

NICTA
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SUMMARY

¢ |'ve told you status today

NICTA
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SUMMARY e

NICTA
¢ |'ve told you status today

— Next week it may be different

e |'ve simplified a lot. There are many hairy details



FILE SYSTEMS e

I’'m assuming: NICTA

e You've already looked at ext[234]-like filesystems

e You've some awareness of issues around on-disk
locality and |/O performance

e You understand issues around avoiding on-disk

corruption by carefully ordering events, and/or by the
use of a Journal.



NORMAL FILE SYSTEMS e

e Optimised for use on spinning disk TR

e RAID optimised (especially XFS)

e Journals, snapshots, transactions...



FLASH MEMORY

e NOR Flash
e NAND Flash

NICTA
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FLASH MEMORY Yo

NICTA
e NOR Flash

e NAND Flash
— MTD — Memory Technology Device
- eMMC, SDHC etc — A JEDEC standard
— SSD, USB — and other disk-like interfaces



NAND CHARACTERISTICS

NAND Flash Chip

Erase Block

( Interface Circuitry

Page

W E e e m— -
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FLASH UPDATE e

NICTA
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FLASH UPDATE
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FLASH UPDATE

NICTA
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THE CONTROLLER:

e Presents illusion of ‘standard’ block device

Manages writes to prevent wearing out
Manages reads to prevent read-disturb
Performs garbage collection

Performs bad-block management

()@
NICTA



THE CONTROLLER: e

e Presents illusion of ‘standard’ block device NICTA

e Manages writes to prevent wearing out
e Manages reads to prevent read-disturb
e Performs garbage collection

e Performs bad-block management

Mostly documented in Korean patents referred to by US
patents!

46
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WEAR MANAGEMENT e

NICTA

Two ways:

e Remap blocks when they begin to fail (bad block
remapping)

e Spread writes over all erase blocks (wear levelling)

In practice both are used.
Also:

e Count reads and schedule garbage collection after
some threshhold
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e Always do cluster-size 1/O (64k)

e First partition segment-aligned



PREFORMAT e

NICTA
o Typically use FAT32 (or exFAT for sdxc cards)

e Always do cluster-size 1/O (64k)
e First partition segment-aligned

Conjecture Flash controller optimises for the
preformatted FAT fs



FAT FILE SYSTEMS

Root Directory
|

- I Reserved

NICTA

FAT ‘

Boot Param
Info Block
- Cluster

Data Area



FAT FILE SYSTEMS Yo

Conjecture The controller has some number of NICTA

buffers it treats specially, to allow more than one write
locus.



TESTING SDHC CARDS e

NICTA

-
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SD CARD CHARACTERISTICS e
NICTA
Card Price/G | #AU | Page size | Erase Size
Kingston $0.80 2 128k 4M
Class 10
Toshiba $1.20 2 64k 8M
Class 10
SanDisk $5.00 9 64k 8M
Extreme
UHS-1
SanDisk $6.50 9 16k 4M
Ex-




WRITE PATTERNS: FILE CREATE

100000

Write 40M File
90000

80000
70000
60000 -
50000

BlockNumber

40000

10000 ‘
0 1 1 1 1 1 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4
Time

(On Toshiba Exceria card)

Oe

NICTA
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WRITE PATTERNS: FILE CREATE (e

22000

20000

18000

16000

14000

12000

10000

8000

NICTA

| I !
"~/iozone.dat" using 1:2 —+—
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F2FS

e By Samsung

NICTA

55



F2FS

e By Samsung

e ‘Use on-card FTL, rather than work against it’

NICTA
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NICTA
e By Samsung

e ‘Use on-card FTL, rather than work against it’
e Cooperate with garbage collection

e Use FAT32 optimisations



F2FS

e 2M Segments written as whole chunks

NICTA
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F2FS e

NICTA

e 2M Segments written as whole chunks — always
writes at log head
— aligned with FLASH allocation units

e Log is the only data structure on-disk

e Metadata (e.g., head of log) written to FAT area in
single-block writes

e Splits Hot and Cold data and Inodes.



BENCHMARKS: POSTMARK 32K READ (e

MB/s

FAT32

EXT4

F2FS

Filesystem

I
Kingston mél
Tosniba ==

Sandisk Extreme
SanDisk Extreme Pro s
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USING NON-F2FS e

NICTA
e Observation: XFS and ext4 already understand RAID

e RAID has multiple chunks, and a fixed stride, so...

e Configure FS as if for RAID



USING NON-F2FS e

Still running benchmarks, see LCA talk next Januanyifora
results!



SCALABILITY e

The Multiprocessor Effect: NICTA

e Some fraction of the system’s cycles are not available
for application work:
— Operating System Code Paths
— Inter-Cache Coherency traffic
— Memory Bus contention
— Lock synchronisation

— |/O serialisation



SCALABILITY e

Amdahl’s law:

If a process can be split
such that o of the running _,>:_Q_,>—_©_,>
time cannot be sped up, but

the rest is sped up by

running on p Processors, _Q»
then overall speedup is N O_,,

\L
)
OQ

v

p T(1-0)

I +o(p—1) —( )=

61



SCALABILITY

Throughput

1 processor

Applied load

NICTA
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NICTA

Throughput

3 processors
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1 processor

Applied load
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NICTA
Throughput
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2 pkocessors
1 processor
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NICTA
Throughput
3 processors
2 processors
1 processor
Applied load
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SCALABILITY Ve

NICTA
Throughput

Latency i Processors

processor

i A

Ny,

Applied load
63



SCALABILITY o

Gunther’s law: NICTA
N
N —
CN) 1+ a(N—-1)+BN(N —1)
where:
N Is demand

a 1S the amount of serialisation: represents Amdahl’s law
3 1s the coherency delay in the system.
C'is Capacity or Throughput
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Throughput
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NICTA

65



SCALABILITY

Throughput
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4000
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USL with alpha=0,beta=0
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Throughput
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NICTA

700

USL with alpha=0.001,beta=0.0000001 ——

600 1

400 1

300 1

Throughput

a>0,8=0
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10000 0 2000 4000 6000 8000 10000

Load

a>0,8>0
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Queue — Server

Poisson

service times
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Queueing Models: NICTA

Poisson

arrivals
—_— Queue —

Server

Poisson
service times

Normal Priority
High Priority

= Qﬁ Queue —

Poisson
service times

Same Server
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SCALABILITY

Real examples:

Throughput

5000
4500
4000
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3000
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0

NICTA
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SCALABILITY

Throughput

5000
4500
4000
3500
3000
2500

2000
1500 j

1000
500

Ot

NICTA

USL with alpha=0.342101,beta=0.017430 ——
Postgres TPC throughput
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20

30

40
Load
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60
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SCALABILITY

Throughput
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SCALABILITY e

Another example: NICTA
20000
| 01-way
18000 02-way
16000 |- 04-way
08-way
o 14000 - 12-way
2 12000 F
S
= 10000
o
4 8000
(@]
ik 6000 [
4000 |
O / ] ] ] ]
0 10 20 30 40 50

Number of Clients



SCALABILITY e

SPINLOCKS HOLD WAIT N |CTA
UTIL CON MEAN ( MAX ) MEAN ( MAX ) (% CPU) TOTAL NOWAIT SPIN RJECT NAME

72.3% 13.1% 0.5us (9.5us) 29us( 20ms) (42.5%) 50542055 86.9% 13.1% 0%
find_ lock_page+0x30

0.01% 85.3% 1.7us(6.2us) 46us (4016us) (0.01%) 1113 14.7% 85.3% 0%
find_ lock_page+0x130



SCALABILITY e

struct page *find_lock_page (struct address_space *mapping, NICTA

unsigned long offset)

struct page x*page;
spin_lock_irq(&mapping->tree_lock) ;
repeat:
page = radix_tree_lookup (&émapping>page_tree, offset);
if (page) {
page_cache_get (page) ;
if (TestSetPagelocked (page)) {
spin_unlock_irqg(&mapping—->tree_lock);
lock_page (page) ;

spin_lock_irq(&mapping—>tree_lock) ;



SCALABILITY

Jobs per Minute

180000
160000
140000
120000
100000
80000
60000
40000
20000
0

20 30
Number of Clients

40

50

NICTA
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TACKLING SCALABILITY PROBLEMS

e Find the bottleneck

NICTA
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TACKLING SCALABILITY PROBLEMS e

NICTA
e Find the bottleneck

e fix or work around it

e check performance doesn't suffer too much on the
low end.

e EXxperiment with different algorithms, parameters
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e Each solved problem
uncovers another

e Fixing performance for
one workload can
worsen another

e Performance problems
can make you cry
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Avoiding Serialisation: NICTA

e Lock-free algorithms

e Allow safe concurrent access without excessive
serialisation

e Many techniques. We cover:
— Sequence locks
— Read-Copy-Update (RCU)
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Sequence locks:
e Readers don’t lock

e Writers serialised.

NICTA
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Reader:

volatile seq;
do {
do {
lastseqg = seq;
} while (lastseqg & 1);
rmb () ;

} while (lastseqg != seq);

NICTA
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Writer:

spinlock (&1lck);
seg++; wmb ()

wmb () ; segt+;
spinunlock (&1lck) ;

NICTA
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RCU: 22 NICTA
1 2.
3. 4.
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