Australian Government

o
NICTA

LINUX, LOCKING AND LOTS OF

PROCESSORS

Peter Chubb

peter.chubb@dnicta.com.au

th ALLATESSE WA QY mvomsHUnesy

F e .Y

THE UNIVERSITY |
OF ADELAIDE = j
ey mermina UNSW deigsie SO

Trade &

Investment el SRMIT

UNIVERSITY

NSW

Qusanstand B S, 2 R redertionzs
Government N e e canBerra UTAS

A LITTLE BIT OF HISTORY e

e Multix in the '60s NICTA

A LITTLE BIT OF HISTORY e

e Multix in the '60s NICTA

e Ken Thompson and Dennis Ritchie in 1967—-70

A LITTLE BIT OF HISTORY (Yo

e Multix in the '60s NICTA

e Ken Thompson and Dennis Ritchie in 1967—-70
e USG and BSD

A LITTLE BIT OF HISTORY e

e Multix in the '60s NICTA
e Ken Thompson and Dennis Ritchie in 1967—-/0

e USG and BSD

e John Lions 1976-95

A LITTLE BIT OF HISTORY (Yo

e Multix in the '60s NICTA

e Ken Thompson and Dennis Ritchie in 1967—-70
e USG and BSD

e John Lions 1976—-95

e Andrew Tanenbaum 1987

A LITTLE BIT OF HISTORY e

e Multix in the '60s NICTA

e Ken Thompson and Dennis Ritchie in 1967—-70
e USG and BSD

e John Lions 1976—-95

e Andrew Tanenbaum 1987

e Linux Torvalds 1991

A LITTLE BIT OF HISTORY (Yo

NICTA

e Basic concepts well established

— Process model
— File system model
— IPC

A LITTLE BIT OF HISTORY (Yo

NICTA

e Basic concepts well established
— Process model
— File system model
- IPC
e Additions:
— Paged virtual memory (3BSD, 1979)

A LITTLE BIT OF HISTORY (Yo

NICTA

e Basic concepts well established
— Process model
— File system model
— IPC
e Additions:
— Paged virtual memory (3BSD, 1979)
— TCP/IP Networking (BSD 4.1, 1983)

A LITTLE BIT OF HISTORY e

NICTA

e Basic concepts well established
— Process model
— File system model
— IPC
e Additions:
— Paged virtual memory (3BSD, 1979)
— TCP/IP Networking (BSD 4.1, 1983)
— Multiprocessing (Vendor Unices such as
Sequent’s ‘Balance’, 1984)

ABSTRACTIONS O‘
NICTA

Sl

PROCESS MODEL e

NICTA

e Root process (init)

e fork () creates (almost) exact copy

— Much is shared with parent — Copy-On-Write
avoids overmuch copying

e cxec () overwrites memory image from a file

PROCESS MODEL e

NICTA

e Root process (init)

e fork () creates (almost) exact copy

— Much is shared with parent — Copy-On-Write
avoids overmuch copying

e cxec () overwrites memory image from a file

e Allows a process to control what is shared

FORK () AND EXEC () (Yo

NICTA
=» A process can clone itself by calling fork ().

=» Most attributes copied:
-=» Address space (actually shared, marked copy-on-write)
=» current directory, current root
=» File descriptors
=» permissions, etc.
-» Some attributes shared:
=*» Memory segments marked MAP_SHARED
=» Open files

FORK () AND EXEC () (e

Files and Processes: NICTA

File descriptor table

TN OO O A WO D = O

Process A

FORK () AND ExXEC ()

TN OO O A WO D = O

Files and Processes:

File descriptor table

Open file descriptor

—= |

Offset

RN

In—kernel inode

Process A

NICTA

FORK () AND EXEC () (e

Files and Processes: NICTA

File descriptor table

Open file descriptor

In—kernel inode
? Offset

dup()

TN OO O A WO D = O

Process A

FORK () AND ExXEC ()

TN OO O A WO D = O

Files and Processes:

File descriptor table

Process A

fON

TN OO O A WO D =+ O

Open file descriptor

In—kernel inode

RN

? Offset
dup()

File descriptor table

\J

Process B

NICTA

FORK () AND ExXEC () (1@

switch (kidpid = fork()) ({ IR

case 0: /% child =/
close (0); close(l); close(2);
dup (1nfd); dup(outfd); dup (outfd),;
execve ("path/to/prog", argv, envp);
_exX1t (EXIT_FATILURE) ;
case —1:
/* handle error =*/
default:
waltpid(kidpid, &status, 0);

STANDARD FILE DESCRIPTORS e

NICTA
0 Standard Input
1 Standard Output
2 Standard Error

=*» Inherited from parent
=» On login, all are set to controlling tty

FILE MODEL e

e Separation of names from content. NICTA

e ‘regular’ files ‘just bytes’ — structure/meaning
supplied by userspace

e Devices represented by files.

e Directories map names to index node indices

(inums)

e Simple permissions model

FILE MODEL

Inode 324

Y

V/ 2
bin 324 \
boot 3
dev 4
var)
vmlinux | 125
etc 6
usr I
sbin 8

324

2
bash 300
sh 300
s 301
which 367
rnano 368
busybox | 402
setserial | 401
bzcmp 265

NICTA

11

NAME| e

NICTA
=» translate name — inode

=» abstracted per filesystem in VFS layer

=» Can be slow: extensive use of caches to speed it up
dentry cache

=» hide filesystem and device boundaries
=» walks pathname, translating symbolic links

NAME] e

NICTA
=» translate name — inode

=» abstracted per filesystem in VFS layer

=» Can be slow: extensive use of caches to speed it up
dentry cache — becomes SMP bottleneck

=» hide filesystem and device boundaries
=» walks pathname, translating symbolic links

EVOLUTION

KISS:
-» Simplest possible algorithm used at first

NICTA

13

EVOLUTION e

KISS: NICTA

=» Simplest possible algorithm used at first
=» Easy to show correctness

-=» Fast to implement

EVOLUTION e
NICTA

KISS:

=» Simplest possible algorithm used at first
=» Easy to show correctness

-=» Fast to implement
=» As drawbacks and bottlenecks are found, replace with
faster/more scalable alternatives

C DIALECT (Yo

e Extra keywords: NICTA

— Section IDs: __init, __exit, __percpu etc

— Info Taint annotation _user, __rcu, _kernel,

__lomem

— Locking annotations __acquires (X),

__releases (X)

— extra typechecking (endian portability) - bitwise

C DIALECT o

e Extra iterators NICTA

— lype_name_foreach ()

e Extra accessors

— container_of ()

C DIALECT (Yo

e Massive use of inline functions NICTA

e Some use of CPP macros

o Little #ifdef use in code: rely on optimizer to elide
dead code.

SCHEDULING e

Goals: NICTA

e O(1) in number of runnable processes, number of
Processors
— good uniprocessor performance

o ‘fair

e (Good interactive response

e topology-aware

SCHEDULING

Implementation:
e Changes from time to time.

e Currently ‘CFS’ by Ingo Molnar.

NICTA

18

SCHEDULING e

Dual Entitlement Scheduler NICTA
Running
“
Expired

1 e |

SCHEDULING e

NICTA

1. Keep tasks ordered by effective CPU runtime
weighted by nice in red-black tree
2. Always run left-most task.

SCHEDULING Yo

NICTA

1. Keep tasks ordered by effective CPU runtime
weighted by nice in red-black tree
2. Always run left-most task.

Devil’s in the detalls:

e Avoiding overflow

e Keeping recent history

e multiprocessor locality

¢ handling too-many threads
e Sleeping tasks

o (5roun hierarchy

SCHEDULING

(hyper)Thread

NICTA

21

SCHEDULING

Core

NICTA

21

SCHEDULING

Oe

NICTA

Packages

Cores

[hyper)Threads

21

SCHEDULING

CCCCC

RAM

rrrrrrrrrrrrrr

CCCCC

rrrrrrrrrrrrr

CCCCC

hhhhhhhhhhhhhh

NUMA Node

NICTA

21

SCHEDULING e

Locality Issues: NICTA

e Best to reschedule on same processor (don't move
cache footprint, keep memory close)

SCHEDULING e

Locality Issues: NICTA

e Best to reschedule on same processor (don't move
cache footprint, keep memory close)

— Otherwise schedule on a ‘nearby’ processor

SCHEDULING e

Locality Issues: NICTA

e Best to reschedule on same processor (don't move
cache footprint, keep memory close)

— Otherwise schedule on a ‘nearby’ processor

e Try to keep whole sockets idle

SCHEDULING e
NICTA

Locality Issues:

e Best to reschedule on same processor (don't move
cache footprint, keep memory close)

— Otherwise schedule on a ‘nearby’ processor
e Try to keep whole sockets idle

e Somehow identify cooperating threads, co-schedule
on same package?

SCHEDULING e

e One queue per processor (or hyperthread) NICTA

e Processors in hierarchical ‘domains’
e Load balancing per-domain, bottom up

e Aims to keep whole domains idle if possible (power
savings)

MEMORY MANAGEMENT Oe

NICTA

Physical Virtual
Highmem
DMA
Linux kernel 3G
Memory in
Z0nes
2
©
=
= User VM
©
a
53
=
g
=
S
hysical address 0

MEMORY MANAGEMENT (Yo

NICTA
e Direct mapped pages become logical addresses

— _pa () and __va () convert physical to virtual for
these

MEMORY MANAGEMENT (Yo

NICTA
e Direct mapped pages become logical addresses
— _pa () and __va () convert physical to virtual for
these

¢ small memory systems have all memory as logical

MEMORY MANAGEMENT e

NICTA
e Direct mapped pages become logical addresses
— _pa () and __va () convert physical to virtual for
these

¢ small memory systems have all memory as logical

e More memory — A kernel refer to memory by

struct page

MEMORY MANAGEMENT (Yo

struct page. NICTA

e Every frame has a struct page (up to 10 words)

e [rack:
— flags
— backing address space
— offset within mapping or freelist pointer

— Reference counts

— Kernel virtual address (if mapped)

MEMORY MANAGEMENT

()@

< >

_/

_/
File

(or swap)

_/

/‘ (

struct
address_space

J

N

.

In virtual address order....

AN

\ struct

vm_area_struct

struct
vm_area_struct

A

(hardware defined)

Page Table

struct mm_struct

NICTA

struct
vm_area_struct

ow

struct task_struct

MEMORY MANAGEMENT (e
NICTA

Address Space:

e Misnamed: means collection of pages mapped from
the same object

e T[racks inode mapped from, radix tree of pages in
mapping

e Has ops (from file system or swap manager) to:
dirty mark a page as dirty
readpages populate frames from backing store

writepages Clean pages — make backing store the
same as in-memaory.copy

MEMORY MANAGEMENT (Yo

migratepage Move pages between NUMA nodds- "
Others... And other housekeeping

PAGE FAULT TIME Yo

e Special case in-kernel faults NICTA

e Find the VMA for the address
— segfault if not found (unmapped area)
e |f it's a stack, extend it.
e Otherwise:
1. Check permissions, SIG_.SEGV if bad
2. Call handle mm _fault ():
— walk page table to find entry (populate higher
levels if nec. until leaf found)
— call handle pte_fault ()

PAGE FAULT TIME e

handle pte_fault (): Depending on PTE status, an'”
e provide an anonymous page
e do copy-on-write processing
e reinstantiate PTE from page cache
e initiate a read from backing store.

and if necessary flushes the TLB.

DRIVER INTERFACE Yo

Three kinds of device: NICTA

1. Platform device
2. enumerable-bus device

3. Non-enumerable-bus device

DRIVER INTERFACE e

NICTA

Enumerable buses:

static DEFINE_PCI_DEVICE_TABLE (cp_pci_tbl) = {

{ PCI_DEVICE (PCI_VENDOR_ID_REALTEK,PCI_DEVICE_ID
{ PCI_DEVICE (PCI_VENDOR_ID_TTTECH,PCI_DEVICE_ID T
{ 1}

b i

MODULE_DEVICE_TABLE (pci, cp_pci_tbl);

33

DRIVER INTERFACE e
NICTA

Driver interface:
init called to register driver
exit called to deregister driver, at module unload time

probe () called when bus-id matches; returns 0 if driver
claims device

open, close, etc as necessary for driver class

DRIVER INTERFACE e

Platform Devices: NICTA

static struct platform _device nsluZ_uart = {
.name = "seri1al8250",

.1d = PLAT8250_DEV_PLATFORYM,
.dev.platform_data = nsluZ2_uart_data,
.num_resources = 2,

.resource = nsluZ_uart resources,

b s

35

DRIVER INTERFACE

non-enumerable buses: Treat like platform devices

(o

NICTA

36

SUMMARY

¢ |'ve told you status today

NICTA

37

SUMMARY e

NICTA
¢ |'ve told you status today

— Next week it may be different

SUMMARY e

NICTA
¢ |'ve told you status today

— Next week it may be different

e |'ve simplified a lot. There are many hairy details

FILE SYSTEMS e

I’'m assuming: NICTA

e You've already looked at ext[234]-like filesystems

e You've some awareness of issues around on-disk
locality and |/O performance

e You understand issues around avoiding on-disk

corruption by carefully ordering events, and/or by the
use of a Journal.

NORMAL FILE SYSTEMS e

e Optimised for use on spinning disk TR

e RAID optimised (especially XFS)

e Journals, snapshots, transactions...

FLASH MEMORY

e NOR Flash
e NAND Flash

NICTA

40

FLASH MEMORY e

NICTA
e NOR Flash

e NAND Flash
— MTD
- eMMGC, SDHC etc
— SSD, USB

FLASH MEMORY e

NICTA
e NOR Flash

e NAND Flash
— MTD — Memory Technology Device
- eMMGC, SDHC etc
— SSD, USB

FLASH MEMORY e

NICTA
e NOR Flash

e NAND Flash
— MTD — Memory Technology Device
- eMMC, SDHC etc — A JEDEC standard
— SSD, USB

FLASH MEMORY Yo

NICTA
e NOR Flash

e NAND Flash
— MTD — Memory Technology Device
- eMMC, SDHC etc — A JEDEC standard
— SSD, USB — and other disk-like interfaces

NAND CHARACTERISTICS

NAND Flash Chip

Erase Block

(Interface Circuitry

Page

W E e e m— -

41

FLASH UPDATE e
NICTA
N
A T

42

FLASH UPDATE e

NICTA

/I

FLASH UPDATE

NICTA

43

FLASH UPDATE

NICTA

43

FLASH UPDATE

NICTA

43

FLASH UPDATE

NICTA

43

FLASH UPDATE Yo

NICTA

43

FLASH UPDATE Ve

NICTA

43

FLASH UPDATE Yo

NICTA

43

FLASH UPDATE

NICTA

43

FLASH UPDATE

RAM

NAND Flash Chip

NOR flash
or
EEPROM

Erase Block

(_Interface Circuitry

Page

r

Processor

FLASH UPDATE

NICTA

i
]
L |

| e ungn ’

i e =

Ldls

cay

Pty

45

THE CONTROLLER:

e Presents illusion of ‘standard’ block device

Manages writes to prevent wearing out
Manages reads to prevent read-disturb
Performs garbage collection

Performs bad-block management

()@
NICTA

THE CONTROLLER: e

e Presents illusion of ‘standard’ block device NICTA

e Manages writes to prevent wearing out
e Manages reads to prevent read-disturb
e Performs garbage collection

e Performs bad-block management

Mostly documented in Korean patents referred to by US
patents!

46

WEAR MANAGEMENT (Y®

NICTA

Two ways:

e Remap blocks when they begin to fail (bad block
remapping)

WEAR MANAGEMENT (e

NICTA

Two ways:

e Remap blocks when they begin to fail (bad block
remapping)

e Spread writes over all erase blocks (wear levelling)

WEAR MANAGEMENT (e

NICTA

Two ways:

e Remap blocks when they begin to fail (bad block
remapping)

e Spread writes over all erase blocks (wear levelling)

In practice both are used.

WEAR MANAGEMENT e

NICTA

Two ways:

e Remap blocks when they begin to fail (bad block
remapping)

e Spread writes over all erase blocks (wear levelling)

In practice both are used.
Also:

e Count reads and schedule garbage collection after
some threshhold

PREFORMAT (Yo

NICTA
o Typically use FAT32 (or exFAT for sdxc cards)

e Always do cluster-size 1/O (64k)

e First partition segment-aligned

PREFORMAT e

NICTA
o Typically use FAT32 (or exFAT for sdxc cards)

e Always do cluster-size 1/O (64k)
e First partition segment-aligned

Conjecture Flash controller optimises for the
preformatted FAT fs

FAT FILE SYSTEMS

Root Directory
|

- I Reserved

NICTA

FAT ‘

Boot Param
Info Block
- Cluster

Data Area

FAT FILE SYSTEMS Yo

Conjecture The controller has some number of NICTA

buffers it treats specially, to allow more than one write
locus.

TESTING SDHC CARDS e

NICTA

-

:"-_i_L
Wz
ny%m

SDHC Memory Card

ultimate X 100X

32GB (o
SOM0GAIGE TOSHIBA

SanbDisk SarDisd
o Extreme Pro
Extreme mm -
Y O5MB/s S

30MB/s* 3. % llj I
| S—
== @

v
o
[s]

SD CARD CHARACTERISTICS e
NICTA
Card Price/G | #AU | Page size | Erase Size
Kingston $0.80 2 128k 4M
Class 10
Toshiba $1.20 2 64k 8M
Class 10
SanDisk $5.00 9 64k 8M
Extreme
UHS-1
SanDisk $6.50 9 16k 4M
Ex-

WRITE PATTERNS: FILE CREATE

100000

Write 40M File
90000

80000
70000
60000 -
50000

BlockNumber

40000

10000 ‘
0 1 1 1 1 1 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4
Time

(On Toshiba Exceria card)

Oe

NICTA

53

WRITE PATTERNS: FILE CREATE (e

22000

20000

18000

16000

14000

12000

10000

8000

NICTA

| I !
"~/iozone.dat" using 1:2 —+—

54

F2FS

e By Samsung

NICTA

55

F2FS

e By Samsung

e ‘Use on-card FTL, rather than work against it’

NICTA

55

F2FS O.

NICTA
e By Samsung

e ‘Use on-card FTL, rather than work against it’

e Cooperate with garbage collection

NICTA
e By Samsung

e ‘Use on-card FTL, rather than work against it’
e Cooperate with garbage collection

e Use FAT32 optimisations

F2FS

e 2M Segments written as whole chunks

NICTA

56

F2FS (Yo

NICTA

e 2M Segments written as whole chunks — always
writes at log head

F2FS (Yo

NICTA

e 2M Segments written as whole chunks — always
writes at log head
— aligned with FLASH allocation units

F2FS e

NICTA

e 2M Segments written as whole chunks — always
writes at log head
— aligned with FLASH allocation units

e Log is the only data structure on-disk

F2FS e

NICTA

e 2M Segments written as whole chunks — always

writes at log head
— aligned with FLASH allocation units

e Log is the only data structure on-disk

e Metadata (e.g., head of log) written to FAT area in
single-block writes

F2FS e

NICTA

e 2M Segments written as whole chunks — always
writes at log head
— aligned with FLASH allocation units

e Log is the only data structure on-disk

e Metadata (e.g., head of log) written to FAT area in
single-block writes

e Splits Hot and Cold data and Inodes.

BENCHMARKS: POSTMARK 32K READ (e

MB/s

FAT32

EXT4

F2FS

Filesystem

I
Kingston mél
Tosniba ==

Sandisk Extreme
SanDisk Extreme Pro s

57

USING NON-F2FS Ve

NICTA
e Observation: XFS and ext4 already understand RAID

USING NON-F2FS e

NICTA
e Observation: XFS and ext4 already understand RAID

e RAID has multiple chunks, and a fixed stride, so...

USING NON-F2FS e

NICTA
e Observation: XFS and ext4 already understand RAID

e RAID has multiple chunks, and a fixed stride, so...

e Configure FS as if for RAID

USING NON-F2FS e

Still running benchmarks, see LCA talk next Januanyifora
results!

SCALABILITY e

The Multiprocessor Effect: NICTA

e Some fraction of the system’s cycles are not available
for application work:
— Operating System Code Paths
— Inter-Cache Coherency traffic
— Memory Bus contention
— Lock synchronisation

— |/O serialisation

SCALABILITY e

Amdahl’s law:

If a process can be split
such that o of the running _,>:_Q_,>—_©_,>
time cannot be sped up, but

the rest is sped up by

running on p Processors, _Q»
then overall speedup is N O_,,

\L
)
OQ

v

p T(1-0)

I +o(p—1) —()=

61

SCALABILITY

Throughput

1 processor

Applied load

NICTA

62

SCALABILITY

Throughput

1 processor

Applied load

NICTA

62

SCALABILITY

Throughput

1 processor

Applied load

NICTA

62

SCALABILITY

Throughput

1 processor

Applied load

NICTA

62

SCALABILITY e

NICTA

Throughput

3 processors

2 processors

1 processor

Applied load

62

SCALABILITY e

NICTA
Throughput
3 processors
2 pkocessors
1 processor
Applied load

62

SCALABILITY e

NICTA
Throughput
3 processors
2 processors
1 processor
Applied load

62

SCALABILITY Ve

NICTA
Throughput

Latency i Processors

processor

i A

Ny,

Applied load
63

SCALABILITY o

Gunther’s law: NICTA
N
N —
CN) 1+ a(N—-1)+BN(N —1)
where:
N Is demand

a 1S the amount of serialisation: represents Amdahl’s law
3 1s the coherency delay in the system.
C'is Capacity or Throughput

SCALABILITY

Throughput

10000

8000

6000

4000

2000

USL with alpha=0,beta=0

2000

4000 6000 8000 10000
Load

0,6=0

NICTA

65

SCALABILITY

Throughput

10000

8000

6000

4000

2000

USL with alpha=0,beta=0

2000

4000 6000 8000 10000
Load

0,6=0

Throughput

30

20

10

2000 4000 6000 8000
Load

a>0,8=0

10000

NICTA

65

SCALABILITY

Throughput

10000

8000

6000

4000

2000

USL with alpha=0,beta=0

2000

4000 6000 8000 10000
Load

0,6=0

Throughput

30

20

10

NICTA

700

USL with alpha=0.001,beta=0.0000001 ——

600 1

400 1

300 1

Throughput

a>0,8=0

0 . . .
10000 0 2000 4000 6000 8000 10000

Load

a>0,8>0

65

SCALABILITY

Queueing Models:

Poisson

arrivals
é

Queue — Server

Poisson

service times

66

SCALABILITY e

Queueing Models: NICTA

Poisson

arrivals
—_— Queue —

Server

Poisson
service times

Normal Priority
High Priority

= Qﬁ Queue —

Poisson
service times

Same Server

66

SCALABILITY

Real examples:

Throughput

5000
4500
4000
3500
3000

2500 ;
2000 ;
1500 ;
1000 ;
500 5

0

NICTA

Y
~
~
Sa

-

-
-
-
-
-
-
-
Y

-

10

20

30 40 50 60 70 80

Load
67

SCALABILITY

Throughput

5000
4500
4000
3500
3000
2500

2000
1500 j

1000
500

Ot

NICTA

USL with alpha=0.342101,beta=0.017430 ——
Postgres TPC throughput

10

20

30

40
Load

50

60

70 80

68

SCALABILITY

Throughput

8000

/7000

6000

5000

4000

3000 |-
2000

1000 |

0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
—————
-
-
-
-
-
-
-
-

-~
~ .
~
~ L4
e

10 20 30 40 50 60
Load

70

80

NICTA

SCALABILITY e

Another example: NICTA
20000
| 01-way
18000 02-way
16000 |- 04-way
08-way
o 14000 - 12-way
2 12000 F
S
= 10000
o
4 8000
(@]
ik 6000 [
4000 |
O /]]]]
0 10 20 30 40 50

Number of Clients

SCALABILITY e

SPINLOCKS HOLD WAIT N |CTA
UTIL CON MEAN (MAX) MEAN (MAX) (% CPU) TOTAL NOWAIT SPIN RJECT NAME

72.3% 13.1% 0.5us (9.5us) 29us(20ms) (42.5%) 50542055 86.9% 13.1% 0%
find_ lock_page+0x30

0.01% 85.3% 1.7us(6.2us) 46us (4016us) (0.01%) 1113 14.7% 85.3% 0%
find_ lock_page+0x130

SCALABILITY e

struct page *find_lock_page (struct address_space *mapping, NICTA

unsigned long offset)

struct page x*page;
spin_lock_irq(&mapping->tree_lock) ;
repeat:
page = radix_tree_lookup (&émapping>page_tree, offset);
if (page) {
page_cache_get (page) ;
if (TestSetPagelocked (page)) {
spin_unlock_irqg(&mapping—->tree_lock);
lock_page (page) ;

spin_lock_irq(&mapping—>tree_lock) ;

SCALABILITY

Jobs per Minute

180000
160000
140000
120000
100000
80000
60000
40000
20000
0

20 30
Number of Clients

40

50

NICTA

73

TACKLING SCALABILITY PROBLEMS

e Find the bottleneck

NICTA

74

TACKLING SCALABILITY PROBLEMS Yo

NICTA
e Find the bottleneck

— not always easy

TACKLING SCALABILITY PROBLEMS Yo

NICTA
e Find the bottleneck

e fix or work around it

TACKLING SCALABILITY PROBLEMS e

NICTA
e Find the bottleneck

e fix or work around it

— not always easy

TACKLING SCALABILITY PROBLEMS Yo

NICTA
e Find the bottleneck

e fix or work around it

e check performance doesn't suffer too much on the
low end.

TACKLING SCALABILITY PROBLEMS e

NICTA
e Find the bottleneck

e fix or work around it

e check performance doesn't suffer too much on the
low end.

e EXxperiment with different algorithms, parameters

TACKLING SCALABILITY PROBLEMS Oe

NICTA

e Each solved problem
uncovers another

e Fixing performance for
one workload can
worsen another

75

TACKLING SCALABILITY PROBLEMS Oe

NICTA

e Each solved problem
uncovers another

e Fixing performance for
one workload can
worsen another

e Performance problems
can make you cry

75

DOING WITHOUT LOCKS Yo

Avoiding Serialisation: NICTA

e Lock-free algorithms

e Allow safe concurrent access without excessive
serialisation

DOING WITHOUT LOCKS (Y®

Avoiding Serialisation: NICTA

e Lock-free algorithms

e Allow safe concurrent access without excessive
serialisation

e Many techniques. We cover:
— Sequence locks
— Read-Copy-Update (RCU)

DOING WITHOUT LOCKS

Sequence locks:
e Readers don’t lock

e Writers serialised.

NICTA

77

DOING WITHOUT LOCKS

Reader:

volatile seq;
do {
do {
lastseqg = seq;
} while (lastseqg & 1);
rmb () ;

} while (lastseqg != seq);

NICTA

78

DOING WITHOUT LOCKS

Writer:

spinlock (&1lck);
seg++; wmb ()

wmb () ; segt+;
spinunlock (&1lck) ;

NICTA

79

DOING WITHOUT LOCKS CYe

RCU: 22 NICTA
1

—_— — — —

80

DOING WITHOUT LOCKS CYe

RCU- 22 NICTA
1. 2.

—_— — — — J

80

DOING WITHOUT LOCKS CYe

RCU: ??

80

DOING WITHOUT LOCKS CYe

RCU: 22 NICTA
1 2.
3. 4.

80

BACKGROUND READING Yo

References NICTA

McKenney, P. E. (2004), Exploiting Deferred Destruction:
An Analysis of Read-Copy-Update Technigues in
Operating System Kernels, PhD thesis, OGI School of

Science and Engineering at Oregon Health and
Sciences University.
URL.:

http://www.rdrop.com/users/paulmck/RCU/RCUd

McKenney, P. E., Sarma, D., Arcangelli, A., Kleen, A.,
Krieger, O. & Russell, R. (2002), Read copy update, in

http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

BACKGROUND READING Yo

‘Ottawa Linux Symp.’. NICTA

URL.:
http://www.rdrop.com/users/paulmck/rclock/r

http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf

