UNSW

THE UNIVERSITY OF NEW SOUTH WALES

NICTA
COMP9242

Advanced Operating Systems

S2/2013 Week 8:
Virtualization

NICTA Funding and Supporting Members and Partners

*x
R i Australian Government Q Australian
g x>, National HE UNvERSITY OF
~ Department of Broadband, Communications University THE CAVERSTY OF N SOUTH WALES NSW MELBOURNE
and the Digital Economy
. 0 B2 nsunavisyor srre QUT THE UNIVERSITY
Australian Research Council SYDNEY Qm@"sla"d @[)J &‘r“l/gglsil:# -y \i'/?f,?ﬁfff‘m"”

Government

Copyright Notice @
NICTA

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work
— to remix—to adapt the work

« under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

» “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW?” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2013 W08 2 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtual Machine (VM) (e
NICTA

“A VM is an efficient, isolated duplicate of a real machine”

* Duplicate: VM should behave identically to the real machine
— Programs cannot distinguish between real or virtual hardware
— Except for:
» Fewer resources (and potentially different between executions)
« Some timing differences (when dealing with devices)

- Isolated: Several VMs execute without interfering with each other

- Efficient: VM should execute at speed close to that of real hardware
— Requires that most instruction are executed directly by real hardware

Hypervisor aka virtual-machine monitor. Software implementing the VM

COMP9242 S2/2013 W08 3 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Types of Virtualization

Plus anything else you
want to sound cool!

“Platform”
(HW/SW
Interface)

Programming
Language

Process

Java
Program

Hypervisor Operating System
Processor Processor Processor Processor

Platform VM/or System VM OS-level VM Process VM
Type-1 Type-2
“Native’ “Hosted”

COMP9242 S2/2013 W08 4 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Why Virtual Machines? Oe
NICTA

« Historically used for easier sharing of expensive mainframes
— Run several (even different) OSes on same machine
 called guest operating system
— Each on a subset of physical resources

— Can run single-user single-tasked O
in time-sharing mode

 legacy support
« Gone out of fashion in 80’s
— Time-sharing OSes common-place
— Hardware too cheap to worry...

Mem. region Mem. region

COMP9242 S2/2013 W08 5 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Why Virtual Machines? e

« Renaissance in recent years for improved isolation
« Server/desktop virtual machine

— Improved QoS an/~ Gernot prediction of 2004:
— Uniform view £* 2014 OS textbooks will be
— Complete enk identical to 2004 version

* replicatio DEIe
_p _ s/process/VM/g
* migration

 checkpointing
« debugging Q
— Different concurrent OSes
+ eg Linux + Windobws
— Total mediation ¢
* Would be mostly unnecessary
— ... If OSes were doing their job! Mem. region Mem. region

COMP9242 S2/2013 W08 6 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Why Virtual Machines? e

 Embedded systems: integration of heterogenous environmentsl\”CTA

— RTOS for critical real-time functionality

— Standard OS for GUIs, networking etc
« Alternative to physical separation

— low-overhead communication

— cost reduction

VM, »
Critical
SW

Mem. region Mem. region

COMP9242 S2/2013 W08 7 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Hypervisor

;

NICTA

* Program that runs on real hardware to implement the virtual machine

 Controls resources
— Partitions hardware
— Schedules guests

» “world switch’”
— Mediates access to shared resources '

e e.g. console
* Implications
— Hypervisor executes in privileged mode
— Guest software executes in unprivileged mode
— Privileged instructions in guest cause a trap into hypervisor
— Hypervisor interprets/emulates them
— Can have extra instructions for hypercalls

COMP9242 S2/2013 W08 8 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

THE UNIVERSITY OF NEW SOUTH WALES

Native vs. Hosted VMM OQ
NICTA

Native/Classic/ Hosted/Type-ll
Bare-metal/Type-l

Hosted VMM beside native apps
— Sandbox untrusted apps

— Convenient for running
alternative OS on desktop

— leverage host drivers

 Less efficient
— Double node switches
— Double context switches

— Host not optimised for exception
forwarding

COMP9242 S2/2013 W08 9 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

THE UNIVERSITY OF NEW SOUTH WAL

Virtualization Mechanics: Instruction Emulation OO
NICTA

« Traditional frap-and-emulate (T&E) approach:
— guest attempts to access physical resource
— hardware raises exception (trap), invoking HV'’s exception handler
— hypervisor emulates result, based on access to virtual resource

* Most instructions do not trap

— prerequisite for efficient virtualisation
— requires VM ISA (almost) same as processor ISA

Guest Hypervisor

Exception

COMP9242 S2/2013 W08 10 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Y OF NEW SOUTH WAL

Trap-and-Emulate Requirements @
NICTA

Definitions:
* Privileged instruction: traps when executed in user mode
— Note: NO-OP is insufficient!
* Privileged state: determines resource allocation
— Includes privilege mode, addressing context, exception vectors...
« Sensitive instruction: control- or behaviour-sensitive
— control sensitive: changes privileged state
— behaviour sensitive: exposes privileged state
* incl instructions which are NO-OPs in user but not privileged state

* [Innocuous instruction: not sensitive

« Some instructions are inherently sensitive
— eg TLB load

« Others are context-dependent
— eg store to page table

COMP9242 S2/2013 W08 11 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Trap-and-Emulate Architectural Requirements Oe
NICTA

« T&E virtualisable: all sensitive instructions are privileged
— Can achieve accurate, efficient guest execution
* ... by simply running guest binary on hypervisor
— VMM controls resources
— Virtualized execution indistinguishable from native, except:
* resources more limited (smaller machine)
« timing differences (if there is access to real time clock)

 Recursively virtualisable:
— run hypervsior in VM
— possible if hypervsior not timing dependent

Guest Hypervisor

Exception

COMP9242 S2/2013 W08 12 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Y OF NEW SOUTH WAL

Impure Virtualization e
NICTA

Virtualise other than by T&E of unmodified binary
Two reasons:
— Architecture not T&E virtualisable
— Reduce virtualisation overheads
Change guest OS, replacing sensitive instructions
— by trapping code (hypercalls)
— by in-line emulation code
Two approaches
— binary translation: change binary
— para-virtualisation: change ISA

COMP9242 S2/2013 W08 13 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Binary Translation (e
NICTA

« Locate sensitive instructions in guest binary,
replace on-the-fly by emulation or trap/hypercall

— pioneered by VMware
— detect/replace combination of sensitive instruction for performance
— modifies binary at load time, no source access required
« Looks like pure virtualisation!
* Very tricky to get right (especially on x86!)
— Assumptions needed about sane guest behaviour
— “Heroic effort” [Orran Krieger, then IBM, later VMware] @

COMP9242 S2/2013 W08 14 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Para-Virtualization OQ

« Newf(ish) name, old technique NICTA

— coined by Denali [Whitaker ‘02], popularised by Xen [Barham ‘03]
— Mach Unix server [Golub ‘90], L4Linux [Hartig ‘97], Disco [Bugnion ‘97]
* |dea: manually port guest OS to modified (more high-level) ISA
— Augmented by explicit hypervisor calls (hypercalls)
 higher-level ISA to reduce number of traps
* remove unvirtualisable instructions
* remove “messy” ISA features which complicate
— Generally outperforms pure virtualisation, binary re-writing
« Drawbacks:
— Significant engineering effort
— Needs to be repeated for each guest-ISA-hypervisor combination
— Para-virtualised guests must be kept in sync with native evolution
— Requires source

COMP9242 S2/2013 W08 15 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

HE UNIVERSITY OF NEW SOUTH WAL

Virtualization Overheads (e

NICTA

VMM must maintain virtualised privileged machine state
— processor status
— addressing context
— device state
VMM needs to emulate privileged instructions
— translate between virtual and real privileged state
— eg guest < real page tables
Virtualisation traps are expensive
— >1000 cycles on some Intel processors!
Some OS operations involve frequent traps
— STI/CLI for mutual exclusion
— frequent page table updates during fork()
— MIPS KSEG addresses used for physical addressing in kernel

COMP9242 S2/2013 W08 16 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtualization Techniques @ [

* Impure virtualisation methods enable new optimisations NICTA

— due to ability to control the ISA

« Example: Maintain some virtual machine state inside the VM
— eg interrupt-enable bit (in virtual PSR)
— requires changing guest’s idea of where this bit lives
— hypervisor knows about VM-local virtual state
* eg queue vitual interrupt until guest enables in virtual PSR

VPSR PSR
| o[| | o] | mov rl, #VPSR
ij_d Trap > ldr rO, [rl]
4 4 orr r0,r0,#VPSR _ID

COMP9242 S2/2013 W08 17 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtualization Techniques Qe
NICTA

« Example: Lazy update of virtual machine state
— virtual state is kept inside hypervisor
— shadowed by copy inside VM
— allow temporary inconsistency between primary and shadow
— synchronise on next forced hypervsior invocation
« actual trap
» explicity hypercall when physical state must be updated
— Example: guest enables FPU, handled lazily by hypervisor:
» guest sets virtual FPU-enable bit
* hypervisor synchronises on virtual kernel exit

 More examples later

VPSR PSR
| ol | | 0] | mov rl,#VPSR
id Frap - ldr 0, [rl]
psid - 4 4 orr r0,r0,#VPSR ID
| AT | o] e o e

COMP9242 S2/2013 W08 18 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtualization and Address Translation e

NICTA
Two levels of address
translation!
QO
Virtual Memory o Virtual Memory Virtual Memory

Virtual ° Virtual Virtual
Page Page Page
Table Table Table

Page Page

Table Table

Must implement with single MMU translation!

COMP9242 S2/2013 W08 19 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtualization Mechanics: Shadow Page Table e
NICTA

(Virtual)
1d r0, adr virtual - taple Shadow (real) guest
dress page table, translations

cached in TLB

Hypervisor's
Guest guest
physical memory map
address
Physical
address

Memory data

COMP9242 S2/2013 W08 20 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtualization Mechanics: Shadow Page Table (e
NICTA

Hypervisor must shadow (virtualize)
all PT updates by guest:
« trap guest writes to guest PT

« translate guest PA in guest (virtual)
PTE using guest memory map O

 insert translated PTE in shadow PT

Used by VMware

O

o

Shadow PT has TLB semantics
(i.e. weak consistency) =
Update at synchronisation points:

« page faults
 TLB flushes

Guest
physical
address

Physical
address

Memory data

COMP9242 S2/2013 W08 21 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtualisation Semantics: Lazy Shadow Update OQ

User Guest OS Hypervisor

mapping to GPT l

add mappings...
access new page

continue

COMP9242 S2/2013 W08 22 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

INIVERSITY OF NEW SOUTH W

Virtualisation Semantics: Lazy Shadow Update OQ

User Guest OS Hypervisor

continue

COMP9242 S2/2013 W08 23 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

HE UNIVERSITY OF NEW SOUTH W/

Virtualization Mechanics: Real Guest PT Oe
NICTA

e

Hypervisor
maintains guest PT

 On guest PT access must
translate (virtualize) PTEs

— store: translate guest “PTE" to
real PTE

— load: translate real PTE to
guest “PTE”

« Each guest PT access traps!
— including reads
— high overhead

Physical
address

Memory data

COMP9242 S2/2013 W08 24 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Y OF NEW SOUTH WAL

Virtualization Mechanics: Optimised Guest PT Oe
NICTA

Para-virtualized

guest “knows” it is
virtualized (uest translates PTEs itself when

reading from PT
— supported by Linux PT-access
wrappers
« Guest batches PT updates using
hypercalls
— reduced overhead

(o)

0
O

Used by
original Xen

Physical
address

Memory data

COMP9242 S2/2013 W08 25 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Y OF NEW SOUTH WAL

Virtualization Mechanics: 3 Device Models Oe

Pass-
through

Emulated

Emu- Device
lation Driver

Device Device Device

COMP9242 S2/2013 W08 26 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtualization Mechanics: Emulated Device e
NICTA

eV|ce

register
accesses

« Each device access must be
trapped and emulated

Emu- — unmodified native driver
Elen — high overhead!

COMP9242 S2/2013 W08 27 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtualization Mechanics: Split Driver (Xen speak) 00
NICTA

" “Para-

virtualized

driver’

« Simplified, high-level

—

Simple Virtual device interface
interface Driver — small number of
hypercalls
— new (but very
Device simple) driver
Virtual AL — low overhead
device — must port drivers to
hypervisor

COMP9242 S2/2013 W08 28 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtualization Mechanics: Driver OS (Xen Dom0) ()@

NICTA
Apps II
Virtual Device » Leverage Driver-OS

Driver Drivers native drivers
— no driver porting

— must trust complete
Driver OS guest!

COMP9242 S2/2013 W08 29 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Virtualization Mechanics: Pass-Through Driver Oe

« Unmodified native
driver

e Must trust driver
(and guest)

— unless have
hardware support Direct device
(/O MMU) access by

guest

Device

COMP9242 S2/2013 W08 30 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Modern Architectures Not T&E Virtualisable Oe
NICTA

« Examples:
— x86: many non-virtualizable features
* e.g. sensitive PUSH of PSW is not privileged
* segment and interrupt descriptor tables in virtual memory
« segment description expose privileged level
— MIPS: mostly ok, but
» kernel registers kO, k1 (for save/restore state) user-accessible
« performance issue with virtualising KSEG addresses
— ARM: mostly ok, but
« some instructions undefined in user mode (banked registers, CPSR)
 PCis a GPR, exception return in MOVS to PC, doesn'’t trap
« Addressed by virtualization extensions to ISA
— x86, Itanium since ~2006 (VT-x, VT-i), ARM since ’12
— additional processor modes and other features
— all sensitive ops trap into hypervisor or made innocuous (shadow state)
e eg guest copy of PSW

COMP9242 S2/2013 W08 31 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

x86 Virtualization Extensions (VT-x) OO
NICTA

 New processor mode: V' /-x root mode
— orthogonal to protection rings
— entered on virtualisation trap

Non-Root
Ring 3

Kernel
entry

VM exit

Hypervisor

COMP9242 S2/2013 W08 32 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

NEW SOUTH WAL

ARM Virtualization Extensions (1) (Jo

NICTA
Hyp mode
* New privilege level
— Strictly higher than kernel
— Virtualizes or traps all
sensitive instructions
“Non-Secure” “Secure” — Only available in ARM
world world TrustZone “non-secure” mode
User mode

COMP9242 S2/2013 W08 33 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

ARM Virtualization Extensions (2) e

Configurable Traps NICTA
~ %86 similar
User mode
User mode User mode

Native syscall

Can configure traps to
go directly to guest OS

Virtual syscall Virtual syscall
Trap to guest

COMP9242 S2/2013 W08 34 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

ARM Virtualization Extensions (3) (JO

Emulation NICTA
1) Load faulting instruction
 Compulsory L1-D miss!
2) Decode instruction
« Complex logic
3) Emulate instruction
« Usually straightforward
IR mv CPU_ASID,rl R2 mv CPU ASID,rl
L11- 1d rl,I:o,Asm) L1 D- T
Cache mv CPU ASID,rl Cache mv CPU _ASID,rl

1d sp, (rl,kern_stk) ...
L2

1d rl, (x0,ASID)
Cache mv CPU ASID,rl

1d sp ,—(rl ,kern stk)

COMP9242 S2/2013 W08 35 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

ARM Virtualization Extensions (3) (Je
NICTA

Emulation Support,
— HW decodes instruction

No x86 — No L1 miss
equivalent * No software decode

— SW emulates instruction
mv
IR mv CPU _ASID,rl £l

« Usually straightforward

L11- 1d rl1, (x0,ASID) L1 D-

mv CPU ASID,rl
Cache 1d sp, (rl,kern_stk) Cache

L2 T

1d r1, (x0,ASID)
Cache mv CPU_ASID,rl
1d sp, (rl,kern_stk)

COMP9242 S2/2013 W08 36 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

ARM Virtualization Extensions (4) Oe

2-stage translation "¢o_ NICTA

x86 similar

- : — Hardware PT walker traverses
(Virtual) both PTs

User Guest guest page — Loads combined (guest-virtual to
14 10, adr ~VMUaAl " table physical) mapping into TLB

dress

Hypervisor's
Guest guest
physical memory map
address
Physical
address

Memory data

COMP9242 S2/2013 W08 37 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

NEW SOUTH WAL

ARM Virtualization Extensions (4) Oe
NICTA

2-stage translation cost
— On page fault walk twice
number of page tables!

— Can have a page miss on each

User Guest
* requiring PT walk

virtual
dress — O(n?) misses in worst case for

n-level PT

— Worst-case cost is massively
worse than for single-level
Guest [ranslation!
physical
address

1d r0, adr

Physical
address

Memory data

COMP9242 S2/2013 W08 38 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

NEW SOUTH WAL

ARM Virtualization Extensions (5) (Jo
NICTA

Virtual Interrupts

 ARM has 2-part IRQ controller
— Global “distributor”
— Per-CPU ‘interface”

 New H/W “virt. CPU interface”
— Mapped to guest
— Used by HV to forward IRQ
— Used by guest to acknowledge

« Halves hypervisor invocations
for interrupt virtualization

CPU Interface

Distributor
S

| 86: issue only
for legacy level-

triggered IRQs

COMP9242 S2/2013 W08 39 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

ARM Virtualization Extensions (6) (o
NICTA

System MMU (I/0 MMU)

 Devices use virtual addresses

« Translated by system MMU
— elsewhere called I/0 MMU
— translation cache, like TLB

Guest Physical — reloaded from same page table
Address

Physical « Can do pass-through I/O safely
Address : :
— qguest accesses device registers

Physical Memory — no hypervisor invocation

COMP9242 S2/2013 W08 40 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Hypervisor Size o

Hypervisor ISA Type Kernel User
OKL4 ARMv7 para-virtualization 9.8 kLOC 0
Prototype = ARMv7 pure virtualization 6 kLOC 0
Nova x86 pure virtualization 9 kLOC 27 kLOC

« Size (& complexity) reduced about 40% wrt to para-virtualization

* Much smaller than x86 pure-virtualization hypervisor
— Mostly due to greatly reduced need for instruction emulation

COMP9242 S2/2013 W08 41 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Overheads (Estimated)

Pure virtualization

Operation

Guest system call 0
Hypervisor entry + exit 120
IRQ entry + exit 270
Page fault 356
Device emul. 249
Device emul. (accel.) 176
World switch 2824

0
650
900
1500
1040

740
7555

Para-virtualiz.

Instruct Cycles (est) Cycles (approx)

300
150
300—-4007?
700
N/A
N/A
200

« No overhead on regular (virtual) syscall — unlike para-virtualization
* Invoking hypervisor 500-1200 cycles (0.6—1.5 us) more than para
« World switch in ~10 ys compared to 0.25 ys for para

= Trade-offs differ

42 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

THE UNIVERSITY OF NEW SOUTH WALES

Hybrid Hypervisor OSes Qe
NICTA

|ldea: turn standard OS into hypervisor
— ... by running in VT-x root mode
— eg: KVM (“kernel-based virtual machine™) Variant: VMware M\V/P

« Canre-use Linux drivers etc « ARM hypervisor
* Huge trusted computing base « pre-HW support
« Often falsely called a Type-2 hypervisor * re-writes exception

vectors in Android
kernel to catch

Non-Root virtualization traps
in guest
Guest Guest Linux Linux
apps apps Ring 3 demons apps B,

Ring 0 Hypervisor

VM exit

COMP9242 S2/2013 W08 43 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Fun and Games with Hypervisors @ [
NICTA

Time-travelling virtual machines [King ‘05]
— debug backwards by replay VM from checkpoint, log state changes
« SecVisor: kernel integrity by virtualisation [Seshadri ‘07]
— controls modifications to kernel (Quest) memory
« Overshadow: protect apps from OS [Chen ‘08]
— make user memory opaque to OS by transparently encrypting
« Turtles: Recursive virtualisation [Ben-Yehuda ‘10]
— virtualize VT-x to run hypervisor in VM
« CloudVisor: mini-hypervisor underneath Xen [Zhang ‘11]
— isolates co-hosted VMs belonging to different users
— leverages remote attestation (TPM) and Turtles ideas

... and many more!

COMP9242 S2/2013 W08 44 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Hypervisors vs Microkernels e

« Both contain all code executing at highest privilege level
— Although hypervisor may contain user-mode code as well

- privileged part usually called “hypervisor”
» user-mode part often called “VMM” Difference to

« Both need to abstract hardware resources t;:?nc::'cﬁgg;!
— Hypervisor: abstraction closely models hardware
— Microkernel: abstraction designed to support wide range of systems
« What must be abstracted?
— Memory
- CPU
— /O
— Communication

COMP9242 S2/2013 W08 45 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Just page

What's the difference? ables in e
dlsgwse NICTA
Resource Hypervisor / Microkernel
Memory C f\{iArtuaI MMU (v"MMU) Address space
CPU Virtual CPU (vCPU) Thread or Just
scheduler activation < kernel-
/0 piified virtual » IPC Intorface Sele s
) . activities
device user-mode driver
* Driver in hypervisor e Interrupt IPC

* Virtual IRQ (VIRQ) Real
Communicatiga="Virtual NIC; withr=—Higi=performance Difference?
driver and network message-passing IPC

stack

|n|ma

 Similar abstractions

* Optimised for
different use cases

overhead,
Custom API

Modelled on HW,

Re-uses SW

COMP9242 S2/2013 W08 46 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Closer Look at I/O and Communication e
NICTA

Virtual Device
Driver Driver

Device
Driver

« Communication is critical for I/O
— Microkernel IPC is highly optimised
— Hypervisor inter-VM communication is frequently a bottleneck

COMP9242 S2/2013 W08 47 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Hypervisors vs Microkernels: Drawbacks (Je
NICTA

Hypervisors: Microkernels:

« Communication is Achilles heel Not ideal for virtualization

— more important than expected — API not very effective
e critical for 1/O « L4 virtualization performance
— plenty improvement attempts close to hypervisor
in Xen « effort much higher
— Virtualization needed for
legacy

- Most hypervisors have big L4 model uses kernel-
TCBs scheduled threads for more

than exploiting parallelism
— Kernel imposes policy

— Alternatives exist, eg. K42
uses scheduler activations

— infeasible to achieve high
assurance of security/safety

— in contrast, microkernel
Implementations can be
proved correct

COMP9242 S2/2013 W08 48 © 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

