
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Introduction to Microkernel-
Based Operating Systems
Björn Döbel

TU Dresden, 2012-07-18 Microkernels - Intro

Lecture Outline

• Microkernels and what we like about them

• The Fiasco.OC microkernel
– Kernel Objects
– Kernel Mechanisms

• OS Services on top of Fiasco.OC
– Device Drivers
– Virtualization

TU Dresden, 2012-07-18 Microkernels - Intro

Purpose of Operating Systems

• Manage the available resources
– Hardware (CPU) and software (file systems)

• Provide users with an easier-to-use interface to access
resources
– Unix: data read/write access to sockets instead of writing

TCP packets on your own

• Perform privileged / HW-specific operations
– x86: ring0 vs. ring3
– Device drivers

• Provide separation and collaboration
– Isolate users / processes from each other
– Allow cooperation if needed (e.g., sending

messages between processes)

TU Dresden, 2012-07-18 Microkernels - Intro

Monolithic kernels - Linux

Linux
Kernel

Processes
 Scheduling

 IPC

Memory
Management

 Page allocation
 Address spaces

 Swapping

File Systems
 VFS

 File System Impl.

Networking
 Sockets
 Protocols

Device Drivers

System-Call Interface

Hardware Access

Application Application Application Application
User mode

Kernel
mode

Hardware
CPU, Memory, PCI, Devices

TU Dresden, 2012-07-18 Microkernels - Intro

What's the problem?

• Security issues
– All components run in privileged mode.
– Direct access to all kernel-level data.
– Module loading easy living for rootkits.→

• Resilience issues
– Faulty drivers can crash the whole system.
– 75% of today's OS kernels are drivers.

• Software-level issues
– Complexity is hard to manage.
– Custom OS for hardware with scarce resources?

TU Dresden, 2012-07-18 Microkernels - Intro

One vision - microkernels

• Minimal OS kernel
– less error prone
– small Trusted Computing Base
– suitable for verification

• System services in user-level servers
– flexible and extensible

• Protection between individual components
– systems get

• More secure – inter-component protection
• More resilient – crashing component does not

(necessarily...) crash the whole system

TU Dresden, 2012-07-18 Microkernels - Intro

The microkernel vision

Memory
Management

 Page allocation
 Swapping

File Systems
 VFS

 File System Impl.

Networking
 Sockets
 Protocols

Device Drivers

Application Application Application Application

Hardware
CPU, Memory, PCI, Devices

 Address Spaces
 Threads

 Scheduling
 IPC

System-Call Interface

Hardware Access

Microkernel

User mode

Kernel
mode

TU Dresden, 2012-07-18 Microkernels - Intro

Microkernel-Based Systems

• 1st generation: Mach
– developed at CMU, 1985 - 1994
– Foundation for several real systems (e.g.,

NextOS Mac OS X)→

• 2nd generation: Minix3
– Andrew Tanenbaum @ VU Amsterdam
– Focus on restartability

• 2nd/3rd generation:
– Various kernels of the L4 microkernel family

TU Dresden, 2012-07-18 Microkernels - Intro

The L4 family – a timeline

v2 x0 x2/v4

N1 N2

Fiasco

L4/x86

L4Ka::Hazelnut

Fiasco/L4v2

L4Ka::Pistachio

NICTA::
Pistachio-embedded

OKL4

Fiasco/L4.Fiasco

OKL4v2

Fiasco.OCL4.Sec

Univ. of
Karlsruhe

Univ. of New South
Wales / NICTA / Open
Kernel Labs

TU
Dresden

SeL4

ABI Specification

Implementation

L2, L3

OC

Nova

Nova

TU Dresden, 2012-07-18 Microkernels - Intro

L4 concepts

• Jochen Liedtke:
“A microkernel does no real work.”
– Kernel only provides inevitable mechanisms.
– Kernel does not enforce policies.

• But what is inevitable?
– Abstractions

• Threads
• Address spaces (tasks)

– Mechanisms
• Communication
• Resource Mapping
• (Scheduling)

TU Dresden, 2012-07-18 Microkernels - Intro

Fiasco.OC – Objects

• OC – Object-Capability system
• System designed around objects providing

services:

• Kernel provides
– Object creation/management
– Object interaction: Inter-Process Communication

(IPC)

Client Service 1

Service 2

call()

call() call()

TU Dresden, 2012-07-18 Microkernels - Intro

Fiasco.OC – Calling objects

• To call an object, we need an address:
– Telephone number
– Postal address
– IP address

• Kernel returns ENOTEXISTENT if ID is wrong.
• Security issues:

– Client could simply “guess” IDs brute-force.
– Existence/non-existence can be used as a covert

channel

Client Service 1

Kernel

call(service1.ID)

TU Dresden, 2012-07-18 Microkernels - Intro

Fiasco.OC – Capabilities

• Capability:
– Reference to an object
– Protected by the Fiasco.OC kernel

• Kernel knows all capability-object mappings.
• Managed as a per-process capability table.
• User processes only use indexes into this table.

Client Service 1

 Kernel

1

2

3

4

Service1
Communication

Channel

invoke(capability(3))

TU Dresden, 2012-07-18 Microkernels - Intro

Fiasco.OC: System Calls

• “Everything is an object.”

• 1 system call: invoke_object()
– Parameters passed in UTCB
– Types of parameters depend on type of object

• Kernel-provided objects
– Threads / Tasks / IRQs / …

• Generic communication object: IPC gate
– Send message from sender to receiver
– Used to implement new objects in user-level

applications

TU Dresden, 2012-07-18 Microkernels - Intro

Kernel vs. Operating System

• Fiasco.OC is not a full
operating system!
– No device drivers

(except UART + timer)
– No file system / network

stack / …

• A microkernel-based OS
needs to add these
services as user-level
components

L4 Runtime
Environment
(L4Re)

Fiasco.OC

Basic Resouce Manager(s)

Sigma0

Moe

Init-style task loader

Ned

User-level libraries

uClibC libstdc++

IPC Client/Server Framework

...

L4
R

e
Kernel
mode

User
mode

TU Dresden, 2012-07-18 Microkernels - Intro

Outline for the Next Lectures

• Fiasco.OC's mapping from managed resources
to kernel objects:
– CPU threads→
– Memory tasks (address spaces)→
– Communication Inter-Process→

 Communication (IPC)

• L4 Runtime Environment
– Device Drivers
– L4Linux

TU Dresden, 2012-07-18 Microkernels - Intro

L4 - Threads

• Thread ::= abstraction of execution
– Unit of CPU scheduling
– Threads are temporally isolated

• Properties managed by the kernel:
– Instruction Pointer (EIP)
– Stack Pointer (ESP)
– CPU Registers / flags
– (User-level) TCB

• User-level applications need to
– allocate stack memory
– provide memory for application binary
– find entry point
– ...

Code

Data

Stack

Stack

Threads

Address Space

TU Dresden, 2012-07-18 Microkernels - Intro

L4 Threads and the Kernel

• Threads run in userland and enter the kernel
– Through a system call (sysenter / INT 0x30)
– Forced by HW interrupts or CPU exceptions

• Kernel Info Page
– Magic memory page mapped into every task
– Contains kernel-related information

• Kernel version
• Configured kernel features
• System call entry code (allows the kernel to

decide whether sysenter or INT 0x30 are better
for a specific platform)

TU Dresden, 2012-07-18 Microkernels - Intro

Thread Control Block (TCB)

• Kernel storage for thread-related information

• One TCB per thread

• Stores user state while thread is inactive

• Extension: User-level Thread Control Block
(UTCB)
– Holds data the kernel does not need to trust
– Mapped into address space
– Most prominent use: system call parameters

TU Dresden, 2012-07-18 Microkernels - Intro

Thread Scheduling

• Whenever a thread enters the kernel, a
scheduling decision is made.

• Fiasco.OC: priority- based round-robbin
– Every thread has a priority assigned.
– The thread with the highest priority runs until

• Its time quantum runs out (timer interrupt),
• Thread blocks (e.g., in a system call), or
• A higher-priority thread becomes ready

– Then, the next thread is selected.

TU Dresden, 2012-07-18 Microkernels - Intro

L4Re and Threads

• Fiasco provides thread-related system calls
– thread_control modify properties→
– thread_stats_time → get thread runtime
– thread_ex_regs modify EIP and ESP→

• But most L4Re applications don't need to
bother:
– L4Re provides full libpthread including

• pthread_create
• pthread_mutex_*
• pthread_cond_*
• ...

TU Dresden, 2012-07-18 Microkernels - Intro

L4Re Applications

• Every L4Re application starts with
– An empty address space

• Memory managed by parent
– One initial thread

• EIP set to binary's entry point by ELF loader
– An initial set of capabilities – the environment

• Parent
• Memory allocator
• Main thread
• Log
• ...

TU Dresden, 2012-07-18 Microkernels - Intro

Performing System Calls

• All Fiasco.OC system calls are performed using
IPC with different sets of parameters.
– Functions are called l4_ipc_*()
– Colloquially: invoke

• Generic parameters (in registers):
– Capability to invoke
– Timeout (how long do I want to block at most? –

let's assume L4_IPC_NEVER for now.)
– Message tag describing the rest of the message

• Protocol
• Number of words in UTCB

• Message-specific parameters in UTCB message
registers

TU Dresden, 2012-07-18 Microkernels - Intro

Writing Output

• L4Re environment passes a LOG capability

– Implements the L4_PROTO_LOG protocol
• By default implemented in kernel and

printed out to serial console

– UTCB content:
• Message reg 0: log operation to perform

(e.g., L4_VCON_WRITE_OP)
• Message reg 1: number of characters
• Message reg 2...: characters to write

TU Dresden, 2012-07-18 Microkernels - Intro

Writing Output: The Code

#include <l4/re/env.h>
#include <l4/sys/ipc.h>

[..]

l4re_env_t *env = l4re_env(); // get environment
l4_msg_regs_t *mr = l4_utcb_mr(); // get msg regs

mr->mr[0] = L4_VCON_WRITE_OP;
mr->mr[1] = 7; // 'hello\n' = 6 chars + \0 char
memcpy(&mr->mr[2], “hello\n”, 7);

l4_msgtag_t tag, ret;
tag = l4_msgtag(L4_PROTO_LOG, 4, /* 4 msg words /

0, L4_IPC_NEVER);

ret = l4_ipc_send(env->log, l4_utcb(), tag); // System Call!

if (l4_msgtag_has_error(ret)) {
 /* error handling */
}

TU Dresden, 2012-07-18 Microkernels - Intro

Writing Output: The Code

#include <l4/re/env.h>
#include <l4/sys/ipc.h>

[..]

l4re_env_t *env = l4re_env(); // get environment
l4_msg_regs_t mr = l4_utcb_mr(); // get msg regs

mr->mr[0] = L4_VCON_WRITE_OP;
mr->mr[1] = 7; // 'hello\n' = 6 chars + \0 char
memcpy(&mr->mr[2], “hello\n”, 7);

l4_msgtag_t tag, ret;
tag = l4_msgtag(L4_PROTO_LOG, 4, /* 4 msg words /

0, 0, L4_IPC_NEVER);

ret = l4_ipc_send(env->log, l4_utcb(), tag); // System Call!

if (l4_msgtag_has_error(ret)) {
 /* error handling */
}

In real code, please just do

puts(“hello”);

TU Dresden, 2012-07-18 Microkernels - Intro

Multithreading

• Fiasco.OC allows multithreading
– Many threads sharing the same address space
– Spread across multiple physical CPUs

• Classical Problem: critical sections

global: int i = 0;

Thread 1 Thread 2

for (unsigned j = 0; j < 10; for (unsigned j = 0; j < 10;
 ++j) ++j)
 i += 1; i += 1;

• The result is rarely i == 20!

TU Dresden, 2012-07-18 Microkernels - Intro

Synchronization

• Critical Sections need to be protected
– Disable interrupts infeasible for user space→
– Spinning burns CPU / energy / time quanta→

• What we want: blocking lock
– Thread tests flag: critical section free yes/no
– waits (sleeping) until section is free

for (unsigned j = 0; j < 10; ++j)

i += 1; Critical Section

TU Dresden, 2012-07-18 Microkernels - Intro

Expected behavior

time

Thread 1

Thread 2

Threads try to
enter critical

section

Thread1 leaves
critical section

Thread2 leaves
critical section

TU Dresden, 2012-07-18 Microkernels - Intro

Synchronization - pthreads

• L4Re provides libpthread, so we can simply use
pthread_mutex operations:

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

[..]

for (unsigned j = 0; j < 10; ++j) {
pthread_mutex_lock(&mtx);
i += 1;
pthread_mutex_unlock(&mtx);

}

• Fiasco.OC's IPC primitives allow for another solution,
though.

TU Dresden, 2012-07-18 Microkernels - Intro

Synchronization: Serializer Thread

• IPC operations are synchronous by default:
– Sender and receiver both need to be in an IPC system call

• There's a combination of sending and receiving a
message: l4_ipc_call().

• This allows synchronization using a serializer thread:

time

Thread 1

Thread 2

Serializer

Blocking
call

Blocking
call

Reply

Done

TU Dresden, 2012-07-18 Microkernels - Intro

Downloading and Compiling

• Fiasco.OC and L4Re are available from
http://os.inf.tu-dresden.de/L4Re

• There are download and build instructions.
– We will use the 32bit versions for this course

 → simply leave all configuration settings at their defaults

– Note, you have to do 2 separate builds: one for
Fiasco.OC and one for the L4Re.

– GCC-4.7 did not work for me at the moment.

http://os.inf.tu-dresden.de/L4Re

TU Dresden, 2012-07-18 Microkernels - Intro

L4Re directory structure

• src/l4
• Important subdirectories: pkg/, conf/
• pkg/contains all applications (each in its own

package)
– Packages have subdirs again:

• server/ the application program→
• lib/ library to be used by clients→
• include/ header files shared between →

server and clients

TU Dresden, 2012-07-18 Microkernels - Intro

Running Fiasco.OC/L4Re

• We'll use QEMU to run our setups.
• L4Re's build system has QEMU support

integrated, which is configured through files
in src/l4/conf:
– modules.lst contains multiboot setup info, →

similar to a GRUB menu.lst
– Makeconf.boot contains overall settings →

(where to search for binaries, qemu, ...)

TU Dresden, 2012-07-18 Microkernels - Intro

modules.lst

modaddr 0x01100000

entry hello
roottask moe --init=rom/hello
module l4re
module hello

Have this once in your
modules.lst file.

Each entry has a name roottask is the initial task
to boot. --init rom/hello asks

it to load the hello binary
from the ROM file system

modules are additional
files. They are loaded into
memory and can then be

accessed through the ROM
file system under the name

rom/<filename>.

TU Dresden, 2012-07-18 Microkernels - Intro

Makeconf.boot

• Start from the example in src/l4/conf
(rename it to Makeconf.boot)

• At least set:
– MODULE_SEARCH_PATH (have it include the

path to your Fiasco.OC build directory)

TU Dresden, 2012-07-18 Microkernels - Intro

Booting QEMU

• Go to L4Re build directory

• Run “make qemu”
– Select 'hello' entry from the dialog

• If there's no dialog, you need to install the
'dialog' package.

• You can also circument the dialog:
make qemu E=<entry>
where entry is the name of a modules.lst
entry.

TU Dresden, 2012-07-18 Microkernels - Intro

Assignments

• Download and compile Fiasco.OC and L4Re.

• Run the hello world example in QEMU.

• Modify the hello world example (it is in
l4/pkg/hello/server/src):
– Replace the puts() call with a manual system

call to the log object.
– You can use the example code from these

slides.

TU Dresden, 2012-07-18 Microkernels - Intro

Further Reading

• P. Brinch-Hansen: The Nucleus of a Multiprogramming
System
http://brinch-hansen.net/papers/1970a.pdf
Microkernels were invented in 1969!

• J. Liedtke: On microkernel construction
http://os.inf.tu-dresden.de/papers_ps/jochen/Mikern.ps
Shaping the ideas found in L4 microkernels.

• D. Engler et al.: Exokernel – An operating system
architecture for application-level resource management
http://pdos.csail.mit.edu/6.828/2008/readings/engler95exokernel.pdf
Taking user-level policy implementation to the extreme.

http://brinch-hansen.net/papers/1970a.pdf
http://os.inf.tu-dresden.de/papers_ps/jochen/Mikern.ps
http://pdos.csail.mit.edu/6.828/2008/readings/engler95exokernel.pdf

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39

